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Abstract—  In Japan, electricity market became open to any 
companies in 2016. Due to this legal change, a lot of new 
power producer and supplier (PPS) could join this market 
and they aim to maximize their profits. Now, they have to 
consider the electricity control method because the 
imbalance penalty would increase in the future.  In this 
paper, we suppose a control strategy of these aggregators 
considering this imbalance penalty. In this system, these 
aggregators can control each household’s electric vehicle as 
a control device by paying some money to the EV owners. 
Of course, offering a higher reward to EV owners, they can 
use more electric vehicles to avoid the imbalance penalty 
than when they offer a lower reward. However, the too high 
reward is a heavy burden for these companies. Using 
reinforcement learning, the aggregator can learn the 
strategy of controlling electric vehicles without defining the 
households’ precise information. As a result, we could 
achieve a 30% cost reduction compared to when no electric 
vehicles are used for reducing imbalance penalty. 
 
Index Terms—reinforcement learning, EV charging, 
imbalances, power systems 
 

I. INTRODUCTION 

A. Background 
In 2016, the electricity market became open to anyone 

in Japan. Nowadays, there are lots of emerging 
companies producing and selling electricity in Japan. 
Most of these new power producer and supplier (PPS) 
tend to only have renewables as a power generator and 
not a controllable generator such as a thermal power plant. 
Since most of them don’t have a controllable generator,  
if they can’t supply electricity precisely, they only rely on 
a general electricity utility by paying the imbalance 
penalty. This imbalance penalty is not so expensive now, 
however, it would get much higher in the future and be a 
heavy burden for these new PPS. 

Recently, energy storage systems have attracted 
attention. In Japan, a lot of renewable energy is 
introduced to the power system, which may make the 
energy system relatively unstable. Energy storage 
systems, for example, battery, electric vehicle (EV) and 
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demand response, are regarded as one of the solutions to 
the problem. New PPS are required to operate more 
responsibly using these technologies. 

Reinforcement learning is also one of the noteworthy 
technologies. By using this technology, the aggregator 
can learn the best action based on the historical actions 
and results. The main feature of reinforcement learning is 
that it doesn’t need a well-defined model because it can 
learn the best policy from its own action and result 
history. 

B. Related Work 
As pointed out in the last subsection, electric vehicles 

and reinforcement learning are one of the most attention-
getting technologies. Thus, there are lots of studies 
regarding these two technologies. In this section, we 
explain some recent studies about these technologies. 

Electric vehicles are used as a means of transportation, 
of course. However, at the same time, electric vehicles 
can be used as a battery when they are connected to the 
grid. Stijn et al. [1] paid attention to the usefulness of 
electric vehicles and considered the management method 
of EV fleets. The paper presented a learning schema of 
how much electricity the aggregator should buy in the 
day-ahead market. Jasna and Willett [2] evaluate how EV 
fleets are used for grid support by some case studies and 
simulated how much EVs can earn if they join the 
regulation market in the United States. They concluded 
that using EVs are cost effective and would also improve 
the stability of the electrical grid. Takeda et al. [3] 
actually did the experiment that tested the controllability 
of EV and confirmed that EV can get the control signal 
from PC. They also made clear that introducing EVs can 
stabilize grid frequency and effective for load frequency 
control. Junjie et al. [4] summarized the studies related to 
EV fleet management and classified EV fleets’ services 
and control methods.  

As for reinforcement learning, because of its wide 
range of applications, there are many studies using this 
technique to this academic field, that is, energy systems 
and economics. Daniel et al. [5] proposed a novel energy 
management system (Demand Response system) using 
reinforcement learning. Since people act differently based 
on their lifestyles, it is impossible to do optimization at 
any time at each home. Reinforcement learning can 
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automatically adjust their lifestyles and reduce end-user 
financial costs from 16% to 40%. However, only one 
household’s demand fluctuates drastically. Thus, Ivana et 
al. [6] proposed multi-agent demand response, which 
means demand response conducted by some households. 
They used reinforcement learning based on their load 
forecasting. Tiago et al. [7] proposed multi-agent 
reinforcement learning in electricity markets. With 
reinforcement learning, each agent can learn the best 
possible bids under the market situation. A.L. Dimeas and 
N.D. Hatziargyriou [8] applied these multi-agent learning 
to microgrids operations. Using reinforcement learning, 
each agent can learn and solve a decision-making 
problem without a central controller.  

Regarding EV charging, Wenbo and Vincent [9] used 
reinforcement learning to find a better EV charging 
strategy under price uncertainty. In their paper, electricity 
cost can vary like the Markov chain, and with many times 
iterations, EV can learn when they should charge and sell 
electricity. Frederik et al. [10] added the uncertainty of 
arrival and departure times of each EV and proposed 
approximate dynamic programming. Their study showed 
their proposal method can reduce the aggregator’s 
expensive peak charging and penalties that resulted from 
not supplying enough electricity to the consumer. 
Konstantina et al. [11] applied the individual utility 
function to EV charging. This is because how much risks 
they take depends on their way of thinking. For example, 
the risk-averse people don’t want to keep their EVs not 
fully charged. 

C. The Purpose of the Study 
Considering these backgrounds, the achievement of 

this paper is proposing the aggregator’s control strategy 
of EVs using reinforcement learning considering the 
trade-off relationship between reward to consumers and 
imbalance penalty to general electricity utility. 

II. SIMULATION MODEL 

A. Aggregator Model 
The overall schema of this paper is shown in Fig. 1. 

The aggregator can control EV fleets, and, with EVs, the 
aggregator aims to minimize its imbalance penalty cost 
and paying rewards to each EV. Please note that EVs 
aren’t owned by the aggregator in this system, thus the 
aggregator has to pay some revenue to each EV and the 
EV owners decide whether they supply electricity or not, 
considering the offered price. Regarding the offered price, 
we assume p = 0.5, 1, 2, 4 [yen/kWh], and the imbalance 
penalty is 24 [yen /kWh]. This is about three times as 
much as today’s price. However, we assume the price 
gets much higher than the present one. 

 
Figure 1.  The schema of the aggregator’s model. 

The aggregator couldn’t assume PV output precisely. 
If the aggregator predicts too wrong output, it would 
make imbalance penalty. In that sense, prediction of PV 
output is one theme of this field. [12] In this paper, we 
assume PV output fluctuates like Fig. 2 below. The red 
line means PV output prediction, and it may cause errors 
with a certain width like a blue line. This prediction is 
based on [13]. 

 

 
Figure 2.  PV output and prediction error. 

B. EV Owner’s Model 
EVs owned by households are not always available for 

electricity storage. In this paper, we assume that the 
availability of EVs is like Fig. 3. Please note that each 
time slot is fixed to 30 minutes. 

 

 
Figure 3.  Available EV rate at each time slot. 

Regarding EV owners’ decision-making, we use logit 
model, which is famous for decision-making process. The 
equations are shown in (1), (2): 

      1P1=
1 exp( ( 2 1))V Vη+ −

                  (1) 

P2 1 P1= −                              (2) 

V1 and V2 represent the consumer’s utility when the 
decision maker chooses 1 (joining this aggregator’s 
control at this time slot) or 2 (not joining this schema at 
this time slot), respectively. In the logit model, people 
make the V1 decision if V2 - V1 is low, that is, V1 is 
much more profitable than V2. The typical graph of this 
model is shown in Fig. 4.d  
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Figure 4.  A typical graph of the logit model. 

With the logit model, we simulated the decision-
making process of EV owners, which means whether they 
should supply EV capacity or not at the offered price. 
Regarding η, we assume that η will become higher if the 
offered price gets higher than the ahead price, and vice 
versa. By introducing this idea, we could simulate 
reinforcement learning. 

C. Reinforcement Learning 
We use reinforcement learning to learn good EVs’ 

reward price strategy by the aggregator itself.                 
Q-learning is one of the most famous reinforcement 
learning algorithms. In this subsection, we explain the 
concept of reinforcement learning.  

At first, reinforcement learning consists of an agent 
and environment. At each time, the agent takes the action 
that the agent thinks it is the best choice for the 
environment. Then, environment changes and the agent 
get some reward from the environment. Repeatedly doing 
this cycle, the agent can learn what it is the best action in 
the present environment. The signal that evaluates the 
result of the action is Q-value. Q-value is updated 
following the equation below: 

( ) ( ) ( ) ( ) ( ){ }t t t t t t t 1 t t tQ ,a Q ,a r ,a maxQ ,a -Q ,aα += + +s s s s s  
      (3) 

α is a constant and it means learning rate, generally, it 
is set to a small number. In this paper, we set α to 0.001. s 
means the state vector that corresponds to each state and 
a means the action that the agent can take. In this paper, 
we assume that s consists of the following variables 
shown in Table I. The reward r means how much it 
would cost if the price is set to at value, that is the sum of 
the imbalance penalty cost and the reward to each EV 
owner. 

TABLE I.  THE MAIN VARIABLES COMPOSING STATE  

Imbalance Compensation [kWh / 30min] 0, 100, 200, 300, 400, 500, 
600, 700 

Available EV rate (Shown in Fig.3) 0.9, 1.0 
η 0.8, 1.4, 2.0 

TABLE II.  THE ACTION VALUES  

Reward to EV [yen /kWh] 0.5, 1.0, 2.0, 4.0 

The action consists of how much the aggregator pays 
to each EV. This variable is shown in Table II. 

III. RESULT 

First, to overview the general tendency, we set the 
number of EVs to 200 and did a simulation. The result is 
shown in Fig. 5. In Fig. 5, cost includes both imbalance 
cost and the reward to each household’s EV. 

Total Cost=Imbalance Cost+EV Reward       (4) 

 
Figure 5.  Total Cost Improvement by reinforcement learning. 

At first, the cost is about 200,000 [yen/day]. However, 
as the aggregator spends more days, the aggregator’s cost 
gets lower. And after about 150 days, the aggregator’s 
cost becomes stable at about 192,000. This means the 
aggregator is able to learn the good strategy of controlling 
EV reward price. Compared to this system, if the 
aggregator doesn’t rely on EVs and pays all the 
imbalance cost (baseline), daily cost is about 274,000 
[yen /day]. Therefore, by relying on EVs, the aggregator 
can save 30% of its cost. Please note that we don’t 
consider about initial cost, for example, the equipment 
cost to control households’ EVs and tell the price to EV 
owners. This point is one of our future works.  

To analyze the relationship between the imbalance cost 
and reward to EVs, we evaluate the daily reward supplied 
to EVs and the daily imbalance cost. 

 

 
Figure 6.  The relationship between the imbalance cost and EV reward. 

Fig. 6 shows the relationship between the imbalance 
cost and the reward to EVs. The reward that the 
aggregator must pay to the EV owners increases as the 
aggregator learns. In contrast, the imbalance cost 
decreases as the aggregator learns. This means that the 
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aggregator is able to learn how the aggregator should 
control the households’ EVs to reduce imbalance penalty 
even the aggregator pays a lot of EV reward. From the 
perspective of the EV owners, they can get a reward from 
the aggregator by joining this schema. And this is also 
good for utility companies because they can operate their 
generation systems more efficiently with a less imbalance. 

Next, to analyze how the imbalance penalty price 
affects the operation, we changed the value of the 
imbalance penalty (which is fixed to 24 [yen/kWh]) to 4, 
8, 16, 24, and 32 [yen/kWh]. The result is shown in Fig. 7. 

Figure 7.  The cost analysis with different imbalance prices. 

Fig. 7 shows that if the imbalance cost is too low, the 
aggregator can’t learn well and decrease daily cost 
compared to the original case (No available EVs). 
However, if the price gets higher, the aggregator can save 
much more cost with EVs compared to the original case. 

IV. CONCLUSION

This paper presented the aggregator’s control strategy 
of households’ EVs. By using reinforcement learning, the 
aggregator can find the good strategy without defining a 
well-defined optimization model. What the novelty we 
proposed was considering the future imbalance penalty 
cost in Japan. In the future, a lot of new PPS will have to 
consider the imbalance penalty cost that is derived from 
their renewables. In this paper, we proposed that the 
aggregator can reduce imbalance penalty by controlling 
households’ EVs. And this is good for other stakeholders, 
such as EV owners and utility companies because EV 
owners can get a reward from the aggregator and the 
utility companies can operate their generation system 
efficiently.  

Regarding our future work, as we describe at the result 
section, considering the equipment cost for the aggregator 
is one of future works. In addition, using other electricity 
resources such as battery and demand response (DR) is 
also one of the solutions to reduce the high imbalance 
penalty for the aggregators. Making the algorithm that 
can control not only EVs but also other electricity storage 
resources is also one of our future works. 
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