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Abstract—This paper proposes a Neural Network Controller 
(NNC) design based on the Maximum Power Point Tracking 
(MPPT) power-converter technique, and applied to a 
Photovoltaic Water Pumping System (PVWPS). To 
maximize the energy utilization and motor-pump efficiency, 
the proposed MMPT-NNC is optimized and trained through 
the hybrid of multi-objective genetic algorithm and back-
propagation algorithm or hMOGA/BPA. By means of the 
genetic optimization, the number of NN parameters and the 
computational complexity can be significantly reduced by 
31% and 18%, respectively. After determining the solutions 
of NN and relevant parameters, the performances of MPPT 
controllers are evaluated in terms of the tradeoff between 
transient response, stabilized MPPT accuracy, and energy 
utilization efficiency, under weather variations. As results, 
the proposed NNC-hMOGA/BPA provides a faster response 
without overshoot, a higher MPPT accuracy with negligible 
oscillations, and 10-40% more energy utilization efficiency 
as compared to the non-optimal NNC, and Perturb and 
Observe (P&O) method. Consequently, the motor-pump 
efficiency is maximized, including water discharge.   
 
Index Terms—neural network controller, multi-objective 
genetic algorithm, Maximum Power Point Tracking 
(MPPT), Photovoltaic Water Pumping System (PVWPS) 
 

I. INTRODUCTION 

Due to global energy crisis, fuel shortage and air 
pollution, a Photovoltaic (PV) energy has become a 
promising renewable energy source in contributing to 
power production because of a large power density, and a 
few hours a day available in most outdoor locations. In 
rural or off-grid connected area, the PV system plays an 
important role in electricfication. PV Water Pumping 
System (PVWPS) among other PV applications is utilized 
to reduce the dependence on diesel fuel costs [1], [2]. To 
obtain an optimal PVWPS, the PV generator is necessary 
to operate at the Maximum Power Points (MPPs) that can 
also highly supply to the motor as load. Unfortunately, 
the locus of the MPPs strongly varies nonlinearly with the 
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climatic chages, then achieving the MPP is not always 
guaranteed, especially under different adverse climatic 
conditions. To improve the efficiency of PVWPS, an 
MPP Tracking (MPPT)-based controller is incorporated.  

Various MPPT controllers have been applied to the PV 
systems [3]-[13]. Generally, they are divided into two 
groups, i.e., conventional controllers, such as Perturb and 
Observe (P&O) method [3], and incremental conductance 
(IC) method [4]; and intelligent controllers, such as 
Neural Network Controller (NNC) [5], [6], Fuzzy Logic 
Controller (FLC) [5], Neuro-Fuzzy Controller (NFC) [7]. 
In practice, the conventional MPPT controllers are widely 
used due to their low cost and ease of implementation. 
However, they show an inefficient operation in failing to 
track the MPPs and by performing oscillations at the 
steady state leading to wasted energy. Alternatively, the 
MPPT-NNC performs the fast transient response against 
the rapid weather changes, and is able to track the MPP 
accurately with negligible oscillations when compared to 
the conventional MPPT controller [8]. However, the 
complexity is the one major drawback of MPPT-NNC. In 
addition, a number of training data, slow convergence, 
and local trap of system parameters from the Back-
Propagation Algorithm (BPA) are the disadvantages. On 
the other hand, the MPPT-FLC and -NFC are outstanding 
to stabilize MPPT accuracy. However, a number of fuzzy 
rules do not contribute enough for accuracy improvement 
while increasing complexity. Furthermore, due to the 
conventional FLC design, i.e., generating fuzzy rules by 
the expert leading to the redundant rules, and adjusting 
parameters through trial and error, the optimal 
performance may not found [9]. 

Considering the NNCs applied to PVWPS [10]-[13], 
they are commonly trained using the BPA by choosing 
the learning rate (η) and momentum (α) from the expert. 
The different input types are used, such as  the solar 
irradiance (G) [10], the output power (PPV) from solar 
generator and motor speed (ω) [11], G and temperature (T) 
[12], and the global maximum power (PGMP) and votage 
at GMP point (VGMP) generated by the scaning algorithm 
(SCA) under partial shaded condition [13]. However, all 
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the MPPT-NNCs mentioned above when using BPA are 
the disadvantages [14]. To overcome these problems, the 
system parameters were chosen from the expert without 
training in order to make the hidden layer output 
linearized [15], but this limits their full potential. 
Moreover, due to a number of hidden layers and hidden 
nodes in the NNC design resulting in computational 
complexity and the massive system parameters, a tuning 
through the conventional BPA may be ineffective. 
Recently, to avoid the explosion of complexity, the novel 
NNC applied to the tracking control problem is proposed 
[16]. In addition, the NNC containing only one adaptive 
parameter is introduced for the reduction of online 
computation [17]. Besides, the stochastic optimizations, 
such as Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), and others, play a role in 
simplifying the NNC design, e.g., NNC-GA [18], [19], 
NNC-PSO [20]. For the MPPT-NNC-GA, the number of 
hidden nodes is determined by GA [18], whereas in [19] 
GA is used to optimize the input dataset.  

Motivated by the aforementioned effectiveness of the 
NNC-GA, the purpose of this work is to design the 
optimal MPPT-NNC using the hybrid Multi-Objective 
GA (MOGA) and BPA optimization, denoted by NNC- 
hMOGA/BP, for the PVWPS. To simplify the NN 
structure, the number of hidden nodes of single hidden 
layer is obtained through the experiment. Furthermore, to 
avoid the use of solar irradiance sensor which is more 
expensive and high-maintenance, the PV current (IPV), 
PV voltage (VPV) and ω are used as the inputs of NNC. In 
this fashion, the number of NN parameters (i.e. weights 
and biases) and their values, including the parameters of 
BPA (η and α), and other relevant parameters (i.e., the 
parameters of genetic operator, and objective function), 
are adjusted simultaneously, and derived through the 
hMOGA/BP, in order to achieve the optimal NNC. The 
proposed controller and the other existing MPPT-
controllers, i.e., non-optimal NNC and P&O method, are 
carried out under fine weather with varying of G and T. 
Several criteria including transient response, MPPT 
accuracy, energy utilization, and computational 
complexity with regard to the multiplication counts are 
assessed to evaluate their performance. 

In the following, the PVWPS is described in Section II. 
The design and optimization of NNC are presented in 

Section III. Section IV provides the results and discussion. 
Finally, Section V concludes this paper. 

II. THE PVWPS DESCRIPTION 

A schematic model of typical PVWPS-controller used 
water storage tank instead of using battery storage (Fig. 1) 
is composed of PV generator, source of water, tank water, 
dc buck converter, Permanent Magnet dc Motor 
(PMDCM) coupled centrifugal pump and MPPT-
controller. The pump flow rate (Q) and Total Dynamic 
Head (TDH) in a pump are predefined to estimate the 
capacity of pump, including rated power of  motor, sizing 
PV, and capacitance (C) and inductance (L) in converter 
design. The MPPT-controller operates to produce the 
required Pulse Width Modulation (PWM) signal and 
corresponding duty ratio (D) for switching of buck 
converter in order to regulate the generated PV power 
from PV array to the motor under weather conditions of 
G and T. In this work, the circuit diagram of PVWPS-
NCC is depicted in Fig. 2. In order to facilitate the most 
suitable approach for overall efficiency of the PVWPS, 
providing a more accurate and efficient model prior to 
installation is necessary. 

To simulate the current-voltage (I-V) characteristics of 
the utilized PV generator, the PV array composed of Ns 
and Np connected in series and parallel, respectively, is 
modeled using single diode equivalent circuit model [21] 
describing by 5 parameters, i.e., the photo-current (Iph), 
diode saturation current (Isd), series resistance (Rs), 
parallel or shunt resistance (Rsh), and the ideality factor of 
diode (n). The PV parameters are derived through the 
extracting method based on artificial intelligence 
technique as referred to [22]. 

 

 
Figure 1. A typical PVWPS with MPPT-NNC. 

 
Figure 2. Schematic circuit diagram of PVWPS with the proposed MPPT-NN. 
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Using those obtained PV parameters, the output 
current of the PV array (IPV) can be determined from the 
implicit expression [21] of  
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KI is the temperature coefficient of Isc, Isd,0 is the 
saturation current at T0, and Eg is the band gap energy of 
the semiconductor (eV).  

The dc power generated from the PV array is supplied 
to the PMDCM under the driving torque of the 
centrifugal pump given by [23], TL=KLωk, where KL and k 
is the constant. At the steady state, i.e., dIa/dt =0, and 
dω/dt=0, the power delivered from the PV PPV(G, T) to 
the motor can be derived as 
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where KL and k is the constant of the load torque, Ia is the 
armature current, Ra is the armature winding resistance, 
La is the armature self-inductance, Kt is the torque 
constant, and B is the viscous torque constant losses. 

The buck converter is employed to step down the PV 
voltage to a rated motor by changing the input resistance 
equal to motor load through the PWM signal generated 
from the MPPT controller. The design of MPPT-NNC 
using hMOGA/BPA is mentioned next section. 

III. THE DESIGN OF MPPT-NNC 
The design procedure of the MPPT-NNC with the 

hMOGA/BPA optimization is shown in Fig. 3. The 
original structure of the MPPT-NNC (Fig. 4) abbreviated 
to NNC (3, NH, 1) comprises 3 input nodes including VPV, 
IPV andω; NH-hidden node, and the output node of the 
estimated-duty ratio ( DNNC ) which is expressed as 

( )( )(2) (1) (1) (2)
NNCD f g b= × × + +W W X b         (3) 

where X=[VPV, IPV, ω]T, (1)W  and (1)b  are (NH×3)-weight 
matrix and NH-bias column vector between input and 
hidden layer, respectively, (2)W and (2)b are NH-weight 
column vector and the bias between hidden and output 
layer, respectively, g(⋅) is hyperbolic tangent function and 
f(⋅) is linear function. Therefore, the number of NN 
parameters (weights and biases) is 5NH+1. 

In order to determine the computational complexity of 
the NNC (3, NH, 1) with regard to the multiplication 
counts, g(⋅) represented by Taylor series (TS) at x=u, i.e., 
g(x)∼(x–u)+(x–u)3/3, where |x–u|≤π/2, provides 3 
multiplications, then the nonlinear transformation of 
hidden layer of NNC requires 3NH-multiplication, 
respectively. Therefore, the NNC provides total (7NH)-
multiplication including 3NH- and NH-multiplication 
generated from input-hidden and hidden-output layer, 
respectively. To optimized the NNC, after normalizing 
the input variables, the Npop-chromosome is randomly 
generated which each possesses vector entries with 
certain length of genes (parameters) of Nbit-length binary 
coding normalized within the specified range [-1, 1]. In 
the proposed encoding scheme all NN parameters (w’s 
and b’s) and relevant parameters, i.e., η, α, and the 
fitness constant (C1), and parameter giving the percentage 
of contribution in the total fitness (C2) in (4), are 
tabulated in Table I. The number of NN parameters are 
reduced through the set {0, 1} which is ‘0’ means not 
consideration the accordingly parameter while ‘1’ means 
to take the parameter into consideration. 

 
Figure 3. The procedure of NNC optimization using hMOGA/BP. 

 
Figure 4. The structure of the optimized MPPT-NNC(3, NH, 1). 

TABLE I.  CHROMOSOME REPRESENTATION FOR THE NNC OPTIMIZATION THROUGH MOGA 

NNC/MOGA Weights Biases Selected  parameters Relevant parameters 
Variable w b - - 
Gene (1) (1) (2) (2)

1,1 3, 1,1 ,1,..., , ,...,
H HN Nw w w w  (1) (1) (2)

1 1,..., ,
HNb b b  {0,1} η,α, C1, C2 

Gene No. |1|…|3NH|3NH+1|…|4NH| |4NH+1|…|5NH+2| |5NH+3|…|10NH+4| |10NH+5|…|10NH+8| 
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In the design, the number of hidden nodes is first 
determined through the experiment. The ith chromosome 
is taken to compute the duty ratio at time k+1 (DNNC, k+1). 
In the learning stage of the network, the weights and 
biases are updated using the hMOGA/BPA in order to 
minimize the Sum of Absolute Error (SAE) of the 
differences between the estimated and desired duty ratios. 
The MOGA seeks to maximize the multi-criteria fitness 
function, Fi,j, (4) composed of the weighted of SAE and 
the reduction of the number of NN parameters in terms of 
ratio of the initial number of parameters (NP0) to the 
current number of parameters (NPiter), 

        

1, , 0
, 2, ,,

,1
| |SP SP

i j
i j i jN N k k i

i itertarget NNCk

C NP
F C

NPD Dλ −
=

= +
−∑

         (4) 

where λ∈(0, 1] is a forgetting factor and NSP is the 
maximum samples per an iteration. The parent 
chromosomes based on their high fitness values are 
selected to generate the offspring by two methods. First, 
the elitism method is used to retain the best chromosome 
about 10%. Second, the roulette wheel method is used by 
assigning a higher probability of selection to individuals 
with higher fitness values that passes through the 
reproduction process, i.e., crossover and mutation with 
probability of PC and PM, respectively. The BPA is 
applied to the individual offspring as the supervised 
training using the inputs-output sequences obtained from 
the simulations in Section 2. The resultant individuals 
refined by BPA and an elite are rearranged according to 
the fitness values. Thus, the chromosomes in the (j+1)th 
iteration are obtained. The genetic process is repeated 
until meeting the maximum iteration (N). 

IV. SIMULATION RESULTS 
In this work, the water source is a well. The Total 

Dynamic Head (TDH) is assumed to be 10 m. The 
average water requirement is 80 m3/day for estimated 
available 6 hrs a day, therefore the flow rate (Q) for the 
pump is 15 m3/h and is varied in the range 10-50 m3/h. 
The total water storage capacity is 240 m3 for a minimum 
of three days water use. According to the specifications 
of the electrical devices utilized in the PVPWS (Table II) 
and the required flow rate, the output power of the PV 
array is varied in the range 300-1,300 W, then PV 
modules are connected in series in order to increase the 
voltage driving the DCPM motor. Therefore, NS is 
sufficiently selected as 9. The IPV-VPV characteristic 
curves of the PV array obtained from the experiment (Fig. 
5(a)) under varying of G and constant T (20°C) against 
the motor load are shown in Fig. 5(b). It is seen that the 
operating points (red circle) deviate away from the MPPs 
(black dot) under adverse conditions (low G and high T).  

For the buck converter design, L and C are estimated to 
be 60 µH and 14 µF, respectively, by method referred to 
[24], when the maximum current is allowed to up to 10 A. 
The peak to peak inductor ripple current and capacitor 
ripple voltage is assumed to be 5%, the PWM switching 
frequency is set as 200 kHz. The maximum input and 
output voltage are 200 V and 120 V, respectively. 

TABLE II.  ELECTRICAL SPECIFICATIONS OF PV MODULE, PMDCM 
AND CENTRIFUGAL PUMP 

Description Specification 
PV module  
- Type 
- Model 
- Rated power (Pmax) 
- Maximum power voltage (Vmp) 
- Maximum power current (Imp) 
- Open circuit voltage (VOC) 
- Short-circuit current (ISC) 

 
Polycrystalline silicon 
SHARP ND-130T1J 

130 W 
17.4 V 
7.48 A 
22.0 V 
8.09 A 

PV circuit parameters [22]  
- Iph 
- Is 
- Rs 
- Rsh 
- n 

 
8.01 A 

8.77 µA 
16 mΩ 

690.72 Ω 
1.877 

PMDC motor [11] 
- Rated motor voltage (Va) 
- Rated motor current (Ia) 
- Rated motor speed (ω) 
- Armature resistance (Ra) 
- Armature inductance (La) 
- Voltage constant (Kt) 
- Torque constant (KL) 
- Motor friction (Am) 

 
120 V 
9.2 A 

2.61 rpm 
1.5 Ω 
0.2 H 

0.676V/rad/sec 
0.676 Nm/A 

0.2 Nm 

Centrifugal pump [11] 
- Moment of inertia (J) 
- Viscous friction coefficient (B) 
- Load torque constant (Ke) 
- Load friction (AL) 

 
0.0236 Kg m2 

0.00238 Nm/(rad/sec) 
0.00039 Nm/(rad/sec) 

0.3 Nm 
 

To optimize the NNC under the given conditions of G 
and T, IPV and VPV were varied from 1 to 8 A, and from 5 
to 175 V in increments of 1 and 10, respectively, and the 
corresponding DNNC was measured for each case. The 
train:test data was set as 70:30 and N=200. To avoid the 
local optimum traps of solutions, λ was set as 0.99. The 
parameters of GA were set as follows: N=200, NSP=144, 
Npop=10, Nbit=12, PC=0.85 and PM=0.15. 

 
(a) 

 
(b) 

Figure 5. (a) Experimental setting of G and T using pseudo-solar for 
the utilized PV-module, (b) The IPV-VPV characteristics of PV array (9-

module connected in series) and motor load characteristics. 
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(a)                                               (b) 

Figure 6. (a) RMSE against NH and (b) The convergence profile of the 
fitness and reduction of the number of parameters through MOGA. 

 
Figure 7. The weather variations of irradiance and temperature. 

 
Figure 8. The regulated IPV, VPV, D and ω under varying of G and T. 

The NNs are started with the small network and 
gradually added hidden nodes as long as their 
performances are not improved. From the consideration 
from the plotting of RMSE against the number of hidden 
nodes in Fig. 6(a), NH is selected as 8, then MPPT-
NNC(3, 8, 1) yields 41 parameters which are tuned 
through the hMOGA/BPA in order to maximize (4). The 
number of multiplications of the MPPT-NNC is 56. 
However, due to the maximizing problem of Eq. (4) with 
over parameter reduction, the solutions may not satisfy 
the optimal solution, then the parameter C1,i and C2,i are 
required to weight the terms in Eq. (4). Therefore, the 
high performance can be found for determining these 
appropriate values. 

From the experiment, C1 and C2 vary in the range of 1-
15 and 10-150, respectively. As can be seen in Fig. 6(b), 
the fitness values increase with iteration and saturate at 
the 50th iteration, the number of parameters of NNC is 
reduced  from 41 to 28 (17-w(1), 5-b(1), 5-w(2), 1-b(2)). 

Therefore, the proposed optimal NNC provides 46-
multiplication resulting in computational complexity 
reduction by 18% when compared with the non-optimal 
NNC. The MATLAB\SIMULINK software is used for 
simulation of the PVWPS-controller. The system was 
simulated to verify the functionality and performance of 
the proposed MPPT-NNC (3, 8, 1) and to quantify how 
the proposed controller increased the system efficiency 
compared with other controllers under different weather 
conditions. Through the test, the performances of the 
controllers are investigated under fine weather (Fig. 7) 
where G and T are varied between 200-1000 W/m2, and 
20-40°C, respectively. The measures are recorded every 
12 minutes. From the control results depicted in Fig. 8, 
the cases show the good matching between IPV, VPV, ω 
and D with the optimal values under weather variations. 
Then, the motor speed reaches to the optimal values 
corresponding to the MPPs of the PV array leading to 
water discharge maximization. However, the control 
results of the P&O are not appreciated due to its high 
fluctuations.  

To investigate the transient and steady-state response 
of the controllers (Fig. 9), the P&O provides fast response 
time, but more oscillations causing more power waste, 
whereas the optimal NNC provides the faster transient 
response as compare to the non-optimal NNC, and 
reaches the MPPs with negligible oscillations. 
Furthermore, the NNCs perform better than the P&O with 
regard to the stabilized MPPT accuracy. 

 
Figure 9. Transient and steady state response of the controllers. 

 
Figure 10. Comparison of energy utilization between MPPT-controllers. 
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In order to compare the energy utilization between the 
controllers, the energy utilization efficiency (ηutilize) over 
interval [ti, tf] is defined as 

( )f

i

t
utilize MPPT MPPt

P t P t dtη = ∫ (5) 

where PMPPT represents the extracting power obtained 
from the controller. From Fig. 10, the proposed optimal-
NNC, non-optimal NNC, and P&O method averagely 
provide about 86%, 81% and 77% energy utilization 
efficiency, respectively. 

V. CONCLUSIONS 
In this work, the optimal NNC called NNC-

hMOGA/BPA is derived through the hMOGA/BPA. By 
MOGA optimization, the number of NN parameters, and 
the comuputational compelxity are significantly reduced. 
The parameters are further fine-tuned for achieving the 
optimal NNC through the BPA. When implemented in 
PVWPS under weather variations, the proposed NNC 
outperforms the rest. Tradeoff by several criteria 
including energy utilization efficiency are assessed to 
support above statement. Continuing the work, the MPPT 
technique based on FLC and NFC with optimization is 
investigated for comparing the performances with that of 
the proposed NCC.  
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