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Abstract—Data de-noising is a necessary part of health 

management, and it is the premise and foundation of 

effective feature extraction, condition monitoring and fault 

diagnosis for aero-engine. Random noise can cause serious 

interference to effective signals, and even lead to signal 

distortion and misdiagnosis of health condition. In view of 

the contradiction between the limited computing power of 

aircraft airborne system and the large amount of data 

processing, an blocked wavelet de-noising algorithm for 

large data is proposed based on the principle of data 

splitting theory and the wavelet theory under the multiple 

constraints of large data, high de-noising precision and fast 

processing speed. The algorithm used data splitting 

principle to split large data into small data sets, reduced the 

computational requirements of large data, and accelerated 

the speed of wavelet de-noising. The processing results of the 

theoretical data and the actual airborne aero-engine 

monitoring data showed that, compared with the traditional 

algorithms, the algorithm can protect the effective 

information and maintain the same de-noising accuracy, 

and the data de-noising time in the aero engine health 

monitoring data environment was accelerated by 4 times at 

least.  
 

Index Terms—aero-engine, health management, large data, 

data splitting, wavelet theory, modulus maxima, random 

noise, SNR 

 

I. INTRODUCTION 

In the process of data acquisition and transmission, 

because of the interference of a variety of factors, the 

collected data often contain noise, it is necessary to 

remove the noise, so as to facilitate subsequent process 

and analyze. As a most important prerequisite for 

accurate data reconstruction, data de-noising is an 

important research topic. 

For a long time, scholars have studied data de-noising 

from space to time transform domain and non local and 

so on, and put forward many effective solutions. They are 

space domain de-noising methods such as neighborhood 

                                                           
Manuscript received August 18, 2018; revised December 5, 2018. 

filtering [1], [2] and Partial Difference Equation (PDE) 

[3], [4], and transform domain de-noising methods such 

as wavelet transform [5]-[7] and multiscale analysis [8], 

[9], and non local de-noising technology [10]-[14] such 

as Non-local Means (NLM) and Principle Neighborhood 

Dictionary (PND) [15] and Local Pixel Grouping-

principal Component Analysis (LPG-PCA) [16] and 

Block-Mactching and 3D filtering (BM3D) [17]. These 

methods are effective to de-noise for small data. 

In recent years, signal sparse representation has 

become a hot topic in the field of signal processing. The 

redundant sparse de-noising methods are represented by 

K-Singular Value Decomposition (K-SVD) [18]-[24] and 

Multiscale K-SVD (MK-SVD) [25], [26] and Learned 

Simultaneous Sparse Coding (LSSC) [27]. They can 

satisfy with the sparsity, feature retention and separability 

of signal noise, and has been successfully applied to the 

image de-noising [28], [29] and seismic data de-noising 

[30]. As a new method, redundant sparse de-noising 

method is used to sparse the de-noise signal with 

redundant atom library to achieve the purpose of 

removing noise. It has shown great potential in the image 

de-noising [31]-[34] and seismic data de-noising [35], 

[36]. While in the traditional sequential sequence of 

massive data processing, it is difficult to make a 

breakthrough under time constraint while ensuring the de-

noising accuracy. 
The wavelet transform has the following advantages: 

(1) Wavelet decomposition can cover the whole 

frequency domain; (2) Wavelet transform can greatly 

reduce or remove the correlation between different 

features by selecting appropriate filters; (3) Wavelet 

transform has the characteristic of "zoom", which can be 

used in high frequency resolution and low time resolution 

in low frequency sections (wide analysis window). Low 

frequency resolution and high time resolution (narrow 

analysis window) can be used in the high frequency 

sections; (4) The wavelet transform can be implemented 

by fast algorithms, such as Mallat Wavelet 

Decomposition Algorithm [37]. Therefore, wavelet 

analysis has been applied to data de-noising effectively 

[37]. When the noise is de-noising, the wavelet analysis 
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theory is not only the precision is guaranteed, but also 

processing speed is relatively fast. However, when 

dealing with the large data for aero-engine health 

management, it can’t meet the requirements of the data 

processing under the conditions of large data, high de-

noising precision, fast processing speed and so on. 

In view of the advantages of wavelet analysis theory, 

this paper uses the principle of data splitting and proposes 

a blocked and accelerated wavelet large data de-noising 

algorithm based on data splitting and wavelet analysis 

(called as BAWLDDABDPW). It can divide large data 

sets into small data sets and accelerate the wavelet data 

de-noising algorithm, and solve the data processing 

requirements under the multiple constraint conditions 

such as large data, high de-noising precision, fast 

processing speed and so on. 

II. WAVELET THEORY 

Signal and noise have different characteristics on 

different scales. On the base of this principle, Mallat, XU 

and Donoho have proposed respectively a signal filtering 

algorithm based wavelet. At present, wavelet filtering 

methods are mainly divided into Bayesian method and 

non Bayesian method. In which the non Bayesian method 

is divided into three kinds: Modulus maxima 

reconstruction filter proposed by Mallat [38]; Wavelet 

domain threshold filtering proposed by Donoho [39]; 

Spatial correlation filter, that is scale space correlation 

filtering, proposed by Xu [40]. The de-noising method 

based on wavelet analysis has a good effect in data de-

noising [41]-[45], including modulus maxima de-noising 

[46]-[48], threshold de-noising [49]-[51] and correlation 

de-noising method [40]. 

A. Wavelet Transform Theory 

If  t  is a square integrable function, that is 

   2t L R  . If its Fourier transform satisfies the 

condition: 

 
2

C d











  

                 (1) 

where:    is  t ’s Fourier transform.  t  is called 

a basic wavelet or a wavelet generating function. 

Equation (1) is called as the admissible condition of a 

wavelet function, and the generating wavelet is not 

unique, but optional. 

If Signal    2f t L R , then its continuous wavelet 

transform is defined as: 

     ,

1
, ,f a

R

t
WT a f t t dt
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    (2) 

If  ,a t  satisfies admissible condition equation (1), 

then continuous wavelet has inverse transformation, its 

corresponding inverse transformation equation is: 

     2

1 1
,

t da
f t W f a db

C a aa



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   
 

  (3) 

In actual signal processing，it is necessary to carry out 

discrete wavelet transform, that is 
0 1

0 0 0, , , , 0,1,2, , 1ja a a a j N   . Normally, if 

2 , 0Ja j  , then the signal is sampling frequency. If 

1j  , the requency is divided by two. And the like. 

B. De-noising Algorithm Based on Modulus Maxima of 

Wavelet Transform 

The principle of modulus maximum de-noising is to 

de-noise based on the difference between the truth value 

and the singularity characteristic of noise. Singularity and 

singular point are important features of signals. Wavelet 

transform has the ability to determine the location and 

size of signal singularity. The description of singularity is 

related to the Lipschitz index. 

【 Definition 1 】  (Lipschitz index) Function  f t  

owned pointwise (or local) Lipschitz index  0  
 in 

point 0t . If there are 0K   and an polynomial  
0t

P t  

which is powered by [ ]n  , they satisfy 

    
0 0 ,tf t P t K t t t R


                    (4) 

If function  f t  owned pointwise Lipschitz index   

for 
0 [ , ]t a b , where K  and 

0t  are irrelevant, then 

function  f t  owned coherent Lipschitz index 

 0    in the interval [ , ]a b . 

Notice: Lipschitz is an expansion for continuity 

depiction. If  f t  is continuous and differentiable with 

power [ ]n   in a neighbourhood of 0t , then  
0t

P t  is a 

polynomials 1n  ahead of the Taylor expansion in 0t . 

That is: 

  
   

 
0

0

0

0 !

kn
k

t

k

f t
P t t t

k

                    (5) 

where, 
   0

k
f t  is the k-order derivative of  f t  in 0t , 

0,1,2, ,k n . 

Specially, if function  f t  is continuous and 

differentiable in 0t , then the Lipschitz index of  f t  in 

the point is 1. If  f t  is differentiable in 0t , but the 

derivative of  f t  is bounded and discontinuous，then 

the Lipschitz index of  f t  in the point is 1 still. If  f t  

is bounded and discontinuous in 0t , then the Lipschitz 

index of  f t  in the point is 0. 

If the Lipschitz index of  f t  less than 1 in the 

point，then function  f t  is singular in 0t  point. If the 

Lipschitz index   of  f t  in the point 0t  satisfies 

1n n   , then  f t  is a n  differentiable function, 
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but the n  order derivative    0

n
f t  is singular in 

0t  

point, its Lipschitz index is n  . This can describe the 

singularity of the signal. The range of Lipschitz index can 

expand to －1≤ ＜0. If the schutz index for Primitive 

Function  F t  of  f t  in 0t  is  ＋1 (－1≤ ＜0), 

then Lipschitz index of  f t  in 0t  is  . Negative 

Lipschitz index means that the function has greater 

singularity than discontinuous function (  ＝ 0). For 

example: 

 A measurement of singular point for polygonal 

function. If 
0t  is singular point, then Lipschitz 

index in 0t  point is  ＝1.  

 A measurement of singular point for jump 

function. If 0t  is step point, then Lipschitz index 

in 0t  point is  ＝0. 

 A measurement of function singularity. If  f t  

is a singular function, then its Lipschitz index in 

0t =0 point is  ＝－1. 

S. Mallat combines the local singularity of the function 

with the modulus local maxima of the wavelet transform. 

【Theorem 1】 If wavelet  t  are real functions 

and continuous, with attenuation 

   
2

1 , 0t K t


 
 

                     (6) 

and    2f t L R  on the interval   owns unanimous 

Lipschitz index  , 1    , then there is a constant 

0C   satisfying ,a b  . There is, 

 
1

2,Wf a b Ca


                            (7) 

Conversely, for a certain  , 1    , if the 

wavelet transform of    2f t L R  satisfies the above 

formula, then  f t  on the interval   owns unanimous 

Lipschitz index  . 

If 0t  is the singular point of  f t , then  ,Wf a b  

can take maximum value in the point 0b t . Different 

singular points can be found at different scales. The 

singularities of noise and signal are hidden in these 

singular points, and they vary with different scales. 

【Theorem 2 】   f t  owns unanimous Lipschitz 

index   on the interval  , for 2 j  , it is obtained as 

follows: 

 
1

22 , 2
j

jWf b C

 

 
                        (8) 

Then, when 1

2
   , modulus maxima of wavelet 

transform is increasing with the increasing of scale j . 

When 1

2
   , modulus maxima of wavelet transform is 

decreasing with the increasing of scale j . When 1

2
   , 

this indicates that the signal is more singular than the 

discontinuous signal, which is the corresponding situation 

of noise, such as white noise 1
, 0

2
       . 

Therefore, the modulus maxima of wavelet transform can 

be used to distinguish signals and noises as the changing 

scales. 

The modulus maxima de-noising method is, based on 

the wavelet transform of the observation function  f t , 

and the different trends for singular points of real value 

 x t  and noise  e t  vary with the different scales, so that 

the singular points are removed coming from the de-

noising, and then the singular points corresponding the 

real values are reconstructed to achieve the de-noising 

purpose. 

III. DATA SPLITTING 

The so-called data set splitting is to divide a large scale 

data set into several smaller disjoint subsets by a certain 

splitting rule in the case that the classification effect is 

not affected as much as possible. Assuming that the 

original dataset is S, the subset of each data is iS , then 

 
1 2

1

n

n iS S S S S                        (9) 

where,  i jS S i j  . 

Now, the splitting rules includes random splitting 

method [52], sequential splitting method [52], attribute 

value splitting method [52], rough set theory splitting 

method [52], information entropy splitting method [53], 

mean shift algorithm [54], etc. The random splitting 

method consists of a small set of data randomly selected 

from a large data set and repeats the process until all the 

data are splitted. Sequential splitting method is extracting 

the former m (m<n) data in order to form a small data set 

according to priority from a large data set with N data, 

and repeating the process until all the data in the original 

dataset is split out. The attribute value splitting method 

splits the original big dataset according to the values of a 

certain attribute or groups of attributes. For example, if an 

attribute in a dataset has a value range of 1 to 10, the 

dataset can be splitted into ten subsets according to each 

value of the attribute. Rough set theory splitting method 

is to make a preliminary calculation of the dataset before 

splitting, and to get a reduction of the set, and then 

calculate the importance of the attribute of the reduction 

set, and to sort according to the importance of the 

attribute, and to classify the data and to split dataset on 

this basis, to ensure the same knowledge or rules between 
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the information system after the splitting and the original 

system, to efficiently solve the splitting of high-

dimensional massive data. In view of informatics, 

information entropy splitting method uses information 

entropy theory, to select the splitting method which 

makes the total entropy of data subset smaller. Mean shift 

algorithm is a two clustering and processing splitting 

method. Firstly, it is used to pre-splitting the large scale 

image dataset, and then the hierarchical clustering 

algorithm is used to cluster the pre-splitting image again. 

When the mean shift algorithm is used for image splitting, 

according to the result of the image smoothing, all the 

pixels converged at the same density maximum point are 

used as the same class, and give the same indicia to used 

pixel points in the class. If the number of points for a 

class is less than the minimum value M, the class is 

removed. 

IV. ALGORITHM RESEARCH 

A. Random Noise Suppression Model 

The classical data de-noising principle is described as 

follows: The original data  f t  is contaminated by 

additive Gauss white noise with zero mean deviation of σ. 

If  f t  is the collected noise data, then 

     f t x t t                       (10) 

The goal of de-noising is to design a de-noising 

method to remove the noise  e t  in  f t , so that the de-

noised data is as close as possible to the original data 

 x t . 

At present, the non local de-noising method has 

achieved good effect on the removal of mild and small 

noise (small σ) in the data, but it is still a challenge to 

recovery the data polluted by the serious noise (large σ). 

When the noise is low, the data de-noising faces three 

prominent contradictions: the first, the data features are 

kept as possible as. The second, the pseudo structure 

which is generated from the noise should be avoided as 

far as possible, thus the artificial noise is reduced. The 

third, how to deal with the de-noising problem of large 

data. 

B. Algorithmic Description 

1) Algorithm procedures 

The basic steps of the blocked modulus maximum data 

de-noising algorithm based on data splitting and wavelet 

analysis are as follows: 

The first step, for the noisy raw dataset S is splitted 

into subsets  1,2, ,iS i n  by using a data splitting 

method. 

The second step, each data subset is to de-noise by 

wavelet de-noising based on modulus maximum de-

noising method. The specific steps are described as 

follows: 

① The wavelet transform of noisy signals is carried 

out, the scale is 2 , 1,2, ,jS j J  , and the modulus 

maxima of transformation coefficients at each scale are 

obtained. 

② Starting from the maximum scale (for example T ), 

a threshold T  is set. If the modulus maximum of this 

scale less than T , then the modulus maxima point is 

removed and the other is retained. And then, a new set of 

modulus maxima points on the maximum scale is 

obtained. 

③ A neighborhood of each maximum point retained in 

a scale function j J  is taken, for example  ,i JN t  . 

The corresponding to the maximum points in the 

neighborhood  

 ,i JN t   on the scale 1j   is found, and these 

maximum points are retained and other maximum points 

are removed. Thus, a set of new maximum points on the 

scale 1j   is obtained. 

④  To set 1j j   and to repeat the step ③  until 

2j  . 

⑤ On the maximum value points are preserved when 

2j  , the corresponding maximum points are found out, 

and the others are removed. 

⑥  The wavelet coefficients of retained maximum 

points at multiple scales are reconstructed by appropriate 

methods. For example, signal reconstruction methods 

include the cross projection method proposed by Mallat 

[55], and the fast algorithm of approximate signal 

reconstruction using frame theory [37]. 

⑦ The reconstructed data subsets 
iSW  are obtained. 

The third step, the result 
iSW  of each subset after de-

noising are reconstructed, and the whole dataset SW  

after de-noising is obtained, that is 

1

=
n

i

i

SW SW


. 

In discrete wavelet transform,  ,Wf j k  can be noted 

as 
2

[ ]jW f k . If k m  is a modulus maximum point, 

then 

2 2

2 2

[ ] [ 1]

[ ] [ 1]

j j

j j

W f m W f m

W f m W f m

  


 

                   (11) 

And the equal signs can’t be taken at the same time in 

the above two formulas. 

2) Algorithmic description 

The blocked modulus maximum data de-noising 

algorithm based on data splitting and wavelet analysis are 

described as follows as Table I: 
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TABLE I.  BLOCKED MODULUS MAXIMUM DATA DE-NOISING ALGORITHM BASED ON DATA SPLITTING AND WAVELET ANALYSIS 

Input: noise dataset S, numbers of data subset n , the size of  

data subset N 

output: SW  after de-noising 

1    To take data splitting, 
1 2

1

n

n iS S S S S     . 

2   for 
iS , do 

①To take Wavelet transform for noise signal, the scale is  

2 , 1,2, ,jS j J  . 

②To obtain a new set of modulus maxima points on the  

maximum scale. 

③To use  ,i JN t   when j J  and obtain the modulus  

maxima points when 1j j  . 

④To set 1j j  ，and repeat the step ③, and until 2j  . 

⑤To use  ,i JN t   when 2j   and obtain the modulus  

maxima points when 1j  . 

⑥To reconstruct wavelet coefficients. 

⑦To output reconstructed 
iSW  data subsets. 

while i n  

3   To reconstruct the whole dataset SW  after de-noising, 

that is 

1

=
n

i

i

SW SW


. 

 

V. EXPERIMENTAL ANALYSIS AND RESULTS 

A. Experimental Data and Environmental Conditions 

1) Experimental data 

Aero-engine is the most critical and complex part of 

aircraft. Its performance and safety will directly affect the 

performance and safety of the whole aircraft. In order to 

improve the safety and reliability of the aircraft and its 

aero-engine, the advanced condition monitoring 

technology is used to measure the health condition of the 

aircraft and aero-engine during the running of the aero-

engine. The fault signs are detected in the early time, and 

the fault diagnosis and maintenance are carried out in 

advance to ensure that the fault is eliminated in time. 

The measured data in one flight of a certain aero-

engine is selected to carry out simulation and verification. 

The flight continued nearly 13h, and the data sampled 

points are 46595, and 46080 of sampling data are selected. 

There are 205 parameters for monitoring aero-engine, and 

the sampled data occupies 116MB (121,864,192 bytes) 

space. Generally, the measurement sample of Static 

Temperature (SAT) parameter is chosen as the analysis 

object. 

2) Simulation environment 

A series of simulation experiments are carried out by 

using the de-noising algorithm. The hardware test 

platform is Intel Core i7 CPU with 4.0GHz main 

frequency and 16GB memory. The simulation software 

platform is Windows 7 64bits operating system and 

Matlab 2014a. 

3) Data splitting rules and parameters setting 

Data subset size selection is based on aero-engine data 

transmission characteristics and wavelet analysis scale 

requirements. The aero-engine monitoring system has 

transmitted downwards at one frame per time, with 60 

sampling points per frame. And the scale requirements of 

wavelet transform meet the requirements 

 2 1,2, ,jS j J   and 1024S  . Therefore, the 

smallest size of the data subset is the least common 

multiple of them, which is 3840. The original dataset is 

divided into 12 subsets, which is =12n . 

It is assumed that the noise is standard zero mean 

Gauss white noise and noise intensity 

 5,10,15,20,25,50,100  . 

B. Performance Evaluation Index 

According to the requirements of aero-engine health 

management, the following 4 parameters are used to 

measure the performance of the algorithm. 
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1) Signal to Noise Ratio (SNR) 

SNR is used as an objective evaluation criterion for de-

noising performance. The definition of SNR [20] is as 

follows: 

 

2

2
10lg

i

i

i i

i

x

SNR
x y

 
 

  
 

 





               (12) 

where, 
ix  is the original signal which is N in length, and 

iy  is the signal after de-noising. The SNR value is the 

greater means that the signal de-noising effect is the 

better. 

2) Mean Square Error (MSE) 

The approximation degree of the two signals is 

evaluated by MSE. MSE is defined as follows: 

 
2

1

1 N

i i

i

MSE x y
N 

 
  

 
                  (13) 

3) Normalized Correlation (NC) 

The degree of approximation of the two signals is 

evaluated by NC. The definition of NC is as follows: 

1

2 2

1 1

N

i i

i

N N

i i

i i

x y

NC

x y



 




 

                    (14) 

The NC value is closer to 1, the two signals are more 

similar. 

4) Algorithm Running Time TIME 

TIME is an important parameter to evaluate the 

performance of the algorithm. Under the premise of 

ensuring the algorithm accuracy, the shorter TIME of the 

algorithm is, the better performance of the algorithm is. 

C. The Effect of Data Size on the Running Time of De-

noising Algorithm 

In order to study the effect of data size on the 

processing time of wavelet de-noising algorithm, the 

author selected 3840, 7680, 11520, 23040, 34560, 46080 

aero-engine condition health test samples, that is, the data 

sizes are 1, 2, 3, 6, 9 and 12 times. Under the condition of 

the noise intensity  =5, the processing time and 

accuracy of the algorithm are simulated. The simulation 

results are shown in Table II, Fig. 1 and Fig. 2. 

TABLE II.  PERFORMANCE COMPARISON OF MODULUS MAXIMUM DE-NOISING METHODS BEFORE AND AFTER DATA SPLITTING IN DIFFERENT DATA 

SIZES 

data sizes 3840 7680 11520 23040 34560 46080 

Before data splitting SNR 101.32 102.09 102.25 101.75 102.26 101.80 

MSE 2.5855 2.39 2.356 2.478 2.354 2.485 

NC 0.9995 0.9996 0.9996 0.9996 0.9996 0.9985 

TIME(s) 169 519 1034 3490 10196 29740 

after data splitting SNR 100.39 99.56 99.76 100.12 100.39 99.82 

MSE 2.84 3.08 3.03 2.92 2.84 3.01 

NC 0.894 0.998 0.9990 0.9994 0.9994 0.9993 

TIME(s) 28.66 102.77 224.26 862.86 1919.80 3444.71 
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Figure 1. Effect of data scale growth on processing time of modulus 
maximum de-noising algorithm. 
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Figure 2. Effect of data scale growth on the performance of modulus 
maximum de-noising algorithm. 
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Under the premise of ensuring the fitting accuracy, the 

polynomial fitting for effect of data scale growth on 

processing time of modulus maximum de-noising 

algorithm is carried out. The fitting curve is as follows: 

06 5 4 3 26.7003 0.018041 0.22364 1.3796

0.77262 0.59866

y e x x x x

x

        

  

 

(15) 

The linear fitting curve is as follows: 

14.276 33.992y x                        (16) 

The accuracy reaching 5.153e-14 of polynomial fitting 

is the highest according to equation (15), while the 

accuracy reaching 64.281 of linear fitting is the lowest 

according to equation (16). Thus, with the increasing of 

data size, the processing time of the wavelet de-noising 

algorithm is increasing by a power function with 5 

constant. 

D. The Effect of Noise Intensity on Running Time of De-

noising Algorithm 
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Figure 3. Time performance change of modulus maximum de-noising 

algorithm under different noise intensities. 
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Figure 4. Accuracy performance change of modulus maximum de-

noising algorithm under different noise intensities. 

In order to analyze effects of the noise intensity of 

aero-engine on performance of the wavelet de-noising 

algorithm, 4096 test samples from the original noise data 

of the aero-engine are selected and analyzed. Generally, 

the noise type is Gauss white noise, and the standard 

intensity deviation is  5,10,15,20,25,50,100  , and 

the mean value of noise intensity is zero. Under the sets 

of noise intensity, the performance of the modulus 

maximum de-noising algorithm is simulated and shown 

in Fig. 3 and Fig. 4. 

E. Acceleration Analysis of De-noising Algorithm by 

Data Splitting 

Because the noise intensity has little effect on the 

accuracy and running time of the wavelet de-noising 

algorithm, it can be ignored. Therefore, the noise 

intensity can be fixed, and then the effect of data splitting 

on the performance and running time of the de-noising 

algorithm is analyzed. Generally, the noise intensity is set 

 5   to simulate and compare the data before and after 

data splitting. Fig. 5 shows the effect of data splitting on 

the run time of wavelet de-noising algorithm. Fig. 6 

shows the effect of data splitting on the accuracy of 

wavelet de-noising algorithm. 
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Figure 5. Effect of data splitting on run time performance of wavelet de-

noising algorithm. 

According to Fig. 5, with the increasing of data size, 

the processing time of data de-noising is increasing 

rapidly. After data splitting, the processing time of data 

de-noising has been effectively reduced. At the same time, 

according to Fig. 6, with the increasing of the size of the 

data, the SNR and MSE are reduced to some extent, 

while the NC remains basically the same. The reduction 

scope of SNR and MSE is not large and can be ignored. It 

can be explained that data splitting has no effect on the 

accuracy performance of the wavelet de-noising 

algorithm. According to Fig. 7, data splitting accelerates 

the processing time of data de-noising, and the speedup is 

over 4. 
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Figure 6. Effect of data splitting on de-noising accuracy performance of 
wavelet de-noising algorithm. 
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Figure 7. Acceleration effect of data splitting for wavelet de-noising 

algorithm. 

VI. CONCLUSION AND PROSPECT 

The wavelet transform has a good time frequency 

localization and multi-resolution analysis ability. Due to 

the increasing of the wavelet transform modulus 

maximum of  effective signal with the increasing of the 

scale, while the decreasing of the wavelet transform 

modulus maximum of the noise with the increasing of the 

scale, and the noise can be de-noising with the different 

features of the effective signal and the noise modulus 

maximum with the scale changing. This paper used the 

theory of data splitting and wavelet analysis, on the basis 

of a large dataset been splitted into small datasets, and 

used the wavelet transform based modulus maximum de-

noising algorithm to de-noise the small data sets, and then 

reconstructed the data after de-noising. After simulation 

of real aero-engine monitoring data, not only the noise is 

well suppressed, but also the accuracy of de-noising is 

maintained, otherwise what is more important is that the 

following conclusions can be drawn under the large data 

environment of aero-engine monitoring: 
(1) With the increasing of data size, the running time 

of the wavelet de-noising algorithm is increasing by a 

power function with 5 constant. 

(2) Noise intensity has little effect on the accuracy and 

running time of the wavelet de-noising algorithm, it can 

be ignored. 

(3) Data splitting accelerates the running time of data 

de-noising, and the speedup is over 4 at least. 

The next step is to study the acceleration of data de-

noising by sparse representation of large-scale signals. 
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