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Abstract—The main purpose of this paper is to utilize the 

method of Support Vector Machine (SVM) to assess the 

power system dynamics to decide which one of the loads 

should be tripped after the fault occurs and then is isolated 

to make the system stable. Because once the fault occurs the 

protection relay is triggered to isolate the fault point but the 

system may be still unstable, therefore the backup 

protection relays in the system are then triggered, and this 

may cause the outage region wider and even results in 

system blackout. To avoid system blackout, the suitable load 

is to be tripped to make the system return to another stable 

operating point after the fault has been isolated. The 

suitable trip loads are the transient stable samples which are 

selected by SVM, and then the load is selected which has the 

lowest impact on system. This paper we employs different 

loading conditions to increase the number of training 

samples to promote the accuracy rate of SVM. The results 

show that the accuracy rate of the purpose method can 

reach 70.86%. 

 

Index Terms—support vector machine, power system 

dynamic analysis, fault isolation, accuracy rate 

 

I. INTRODUCTION 

The increasing load demand in power systems without 

accompanying investments in generation and 

transmission has affected the analysis of stability 

phenomena, there will be more challenges for the security 

and stability analysis of the power systems, and these 

traditional analysis methods such as time domain 

simulation has been not well meet the current needs of 

power grid [1]. With the development of wide area 

measurement system and big data methodology, using 

data mining methods to analysis the vast amount of data 

will bring new opportunities for stability assessment of 

power system [2].  

The main purpose of this paper is to study the analysis 

of power system dynamics with the data mining method 

of big data methodology [3]. The approach of using data 

mining method for Transient Stability Assessment (TSA) 

is to train classifiers, such as Support Vector Machine 

(SVM), which use large amount of data to estimate the 

stability boundary of power system, then tries to figure 

out whether a new sample is in or out of the boundary, 

corresponding to the system is stable or not [4], [5]. The 

process for stability analysis of power system by SVM 

method can be divided into three steps: Firstly, the 
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features that can rapidly reflect the transient process, such 

as generator rotor angles, are is selected for being the 

subsets of power system dynamic analysis. And then 

these feature subsets are used to train the SVM. Finally, 

these training data is integrated to assess the transient 

stability of power system. 

II. SUPPORT VECTOR MACHINE ALGORITHM 

Support Vector Machine (SVM) is based on the 

concept of decision planes that define decision 

boundaries [6]. A decision plane is one that separates 

between a set of objects having different class 

memberships. SVM performs the task of classification by 

first mapping the input data to a multidimensional feature 

space and then constructing an optimal hyper plane 

classifier separating the two classes with maximum 

margin. SVM performs minimization of error function by 

an iterative training algorithm to construct an optimal 

hyperplane [7]. 

SVM is a machine learning technique for classification. 

Given a training set of samples { }ix . The hyperplane is 

determined by an orthogonal vector w  and a bias b , 

which identifies the points that satisfies 0iw x b   . By 

finding a hyperplane that maximizes the margin of 

separation 2 / w , it is intuitively expected that the 

classifier will have a better generalization ability. The 

hyperplane with the largest margin on the training set can 

be completely determined by the nearest points to the 

hyperplane [6], [8]. To show the underlying reason for 

doing this, consider the fact that it is always possible to 

scale w  and b  so that: 

 1iw x b    (1) 

and 

 1iw x b     (2) 

If these data are excluded from the training set one can 

separate the remaining part of the training set without 

errors. To separate the remaining part of the training data 

one can construct an optimal separating hyperplane. This 

idea can be expressed formally as: minimize the 

functional [6], [8]. 
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where w  is weight vector of the hyperplane, 0C   is 

penalty parameter proportional to the amount of 

constraint violation,  is a slack variable, 
ix  is a 

mapping from input space to feature space, and b  is 

threshold. 

A hyperplane is used in the middle of the two classes, 

for the separation of these data, as shown in Fig. 1 [6]. 

 

Figure 1. Optimal hyperplane and maximum margin. 

As practical problems are often not to be linearly 

separable, the linear SVM has been extended to a 

nonlinear function by mapping the training data to an 

expanded feature space using a nonlinear transformation. 

An N dimensional linear separator  w  and a bias b  then 

constructed for the set of transformed vectors 

        1 2, ,..., ,  1,...,i i i N ix x x x i l       (4) 

Classification of an unknown vector x is done by first 

transforming the vector to the separating space 

( ( )ix x ) and then taking the sign of the function. 

The computation of the decision boundary of an SVM for 

the nonseparable case consists in solving the following 

optimization problem: 
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Instead of solving (5) directly, it is much easier to 

solve the dual problem (6), in terms of the Lagrange 

multipliers 
i   
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which is quadratic optimization problem. From the 

solution, ,  1, ,i i N   of (6), the decision rule  f x  

can be computed as 
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where the number of units  ,i jK x x  is kernel function to 

determine by the number of support vectors. 

The training points with 0i   are the support vectors, 

and (7) depends entirely on support vectors. The 

threshould b  can be calculated using (1) and (2), which 

is valid for any support vector 
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III. POWER SYSTEM DYNAMIC  

A. Extended Equal Area Criterion 

Transient stability is the ability of a power system to 

retain synchronism subject to disturbances [9]. In the 

extended equal area criterion, the multi-machine system 

is decomposed into a “candidate critical machine” and the 

remaining machines, aggregated to an equivalent one. 

The former is a machine (or cluster of machines) likely to 

be responsible for the systems separation, should the 

circuit breaker operations be used to island the part of the 

system which leads to loss of synchronism. Using the 

above aggregation with the well-known equal area 

criterion, a simple analytic direct methodology is devised 

that has a number of advantages [10]. 

In order to model the equivalent machine denoted by 

aggregated to one machine and its motion, we use the 

standard Centre of Angles (COA) 
COA concept, while 

considering only the machines of the all remaining 

machines with machine s excluded. In this case we set: 
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where iH  is inertia coefficient of the thi  machine, and i  

is rotor angle of the thi  machine. 

B. Assessment Indices Calculation 

Transient instability of a power system is directly 

related to the angular separation between generators, 

Therefore, the generator rotor angles have been used for 

deriving indicators of transient instability [9]. The 

synchronous generator rotor angle
i is calculated in the 

simulation, and the maximum angle deviation of any one 

machines and at any time is recorded, denoted by ,maxi . 

This value is later utilized to determine the system 

stability after faults. The transient stability assessment 
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result is obtained by observing difference in rotor angle 

between 
COA  and ,maxi : 

 
max 180i COA       (10) 

where when the transient stability index 180   , the 

system is considered as stable [11], [12]. 

Due to once the fault occurs the protection relay is 

triggered to isolate the fault point but the system may be 

still unstable, therefore to avoid system blackout, the 

suitable load is to be tripped to make the system return to 

another stable operating point after the fault has been 

isolated. The rule of suitable loads tripping is presented 

as 

 No trip  Trip samll load  Trip large load    (11) 

Employing the generator rotor angle   and loads 

tripping data for each training, the training samples can 

be established for the input of each training case. 

IV. CASE STUDY 

A. Study System 

In this paper, the two-area power system is used as the 

sample power system to assess the system stability 

assessment. The model of a power system used in this 

paper is shown in Fig. 2 [9]. The system contains 12 

buses and two areas. The system is consist of two areas 

where each area supplied by two generators, each having 

a rating of 900 MVA. The generator is connected to 

electrical power system grid through a transformer. The 

load on the system is assumed as constant impedance. 

 

Figure 2. Single-line diagram of two-area power system. 

B. Test Results 

This paper use different loading conditions to increase 

the number of training samples to promote the accuracy 

rate of SVM. In simulation, the two-area power system is 

considered, the load is changed randomly in a range of 

5% and -10%, and then 747 samples are generated, as 

shown in Table I. All the considered faults are three-

phase short circuit at each bus, and cleared after 4 cycles. 

The feature selections as training samples include 

generator rotor angle   and suitable loads tripping. The 

training samples are used to train the SVM. The training 

samples are then tested with different samples for 

accuracy evaluation.  

 

TABLE I.  SYSTEM LOAD VARIATION 

 
Origin 
system 

load 

load 

+5% 

load 

+4% 

load 

+3% 

load 

+2% 

load 

+1% 

L7 
(MW) 

967 1015.6 1005.7 996.0 986.3 976.7 

L10 

(MW) 
1767 1855.6 1837.7 1820.0 1802.3 1784.7 

 

 
load  

-1% 

Load 

 -2% 

load  

-3% 

load  

-4% 

Load 

 -5% 

load  

-6% 

L7 
(MW) 

957.3 947.7 938.0 928.3 918.7 909.0 

L10 

(MW) 
1749.3 1731.7 1714.0 1696.3 1678.7 1661.0 

 

 
load  

-7% 

load  

-8% 

Load 

-9% 

load  

-10% 
  

L7 
(MW) 

899.3 889.6 880.0 870.3   

L10 

(MW) 
1643.3 1625.6 1608.0 1590.3   

 

We use the training and test samples to examine the 

effectiveness of the SVM to power system dynamic 

analysis. Table II presents the evaluation indices of SVM. 

Fig. 3 is the accuracy rate of SVM. Fig. 4 is the 

computation time of SVM. It can be observed that the 

precision of SVM increased as the data set is scaled up. 

Moreover, as the number of samples increase to 747, the 

precision reach 70.86%. 

TABLE II.   EVALUATION INDICES OF SVM 

Number of samples 100 200 300 

Accuracy rate of SVM 0.2131 0.4496 0.5265 

Computation time (sec) 0.1345 0.236 0.3727 

 

Number of samples 500 600 747 

Accuracy rate of SVM 0.6243 0.6644 0.7086 

Computation time (sec) 0.6110 0.7727 1.1615 

 

 

Figure 3. Accuracy rate of SVM. 

 

Figure 4. Computation time of SVM. 
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V. CONCLUSION 

This paper has presented power system dynamic 

analysis based on Support Vector Machine (SVM) to 

decide which one of the loads should be tripped after a 

fault occurs and then is isolated to make the system stable. 

In order to protect the system against blackout, the 

suitable load to be tripped to make the system return to 

another stable operating point after the fault has been 

isolated. The power system dynamic analysis consists of 

three steps: First, the features include generator rotor 

angles and suitable loads tripping are selected to 

represent the system status. Then, the SVM model is 

trained using the selected features. Finally, the accuracy 

of the proposed SVM is examined. The simulation results 

reveal that the precision of SVM increased as number of 

training samples are scaled up, and the accuracy rate of 

the SVM can reach 70.86%. The SVM is computationally 

efficient to train extracted data features, making the SVM 

feasible for assessing system dynamic tasks in power 

system. 
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