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Abstract—An approach is proposed in this paper to derive a 

delay-dependent robust stabilization criterion for uncertain 

input-delayed system in Linear Matrix Inequality (LMI) 

framework using Proportional-Integral (PI) controller. By 

adding integral control action for the state feedback 

stabilization the degree of freedom of the controller 

increases as a result of which the robustness increases. The 

matrix variables are involved in the Lyapunov-Krasovskii 

approach for deriving a less conservative stabilization 

criterion. The obtained criterion is validated by a well-

known example with some existing results. 
 

Index Terms—time-delay system, PI controller, Lyapunov-

Krasovskii functional 

 

I. INTRODUCTION 

Time delay is an unavoidable phenomenon. This may 

occur during the transmission of information from a 

remotely located plant to the controller and the controller 

to the plant [1], [2]. It encounters in various practical 

systems, power systems, network control systems, 

economical system, biological systems etc. Its presence in 

the system is the major cause of performance degradation 

and system instability [3]–[5]. Due to the presence of this 

delay in the closed loop system, the analysis and 

controller design become challenging for control 

designers. It becomes more challenging when the delay is 

considered to be time-varying in nature [6], [7]. Many 

stability analysis and controller design approaches for 

time-delay systems have been reported in the literature, 

[8]–[16] and references therein. According to the 

dependence of the delay, the stability or stabilization 

criteria are generally categorized into two types, (i) delay-

dependent criteria, (ii) delay-independent criteria [5], [17]. 

The former criteria take the size of the delay into account 

and the later can be applied to delays with arbitrary size. 

The delay-dependent analysis tends to be less 
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conservative than the delay-independent one because it 

uses the information on the length of delay, especially 

when the delay is small [7].  

For stability analysis and stabilization problem of time 

delay systems, time domain approaches are widely used 

because of their ease handling of uncertainties, 

nonlinearities than that of frequency domain approaches 

such as matrix pencil method and frequency sweeping 

method [18]. In time-domain approaches, two widely 

used techniques such as Lyapunov-Razumikhin (LR) 

functional approach and Lyapunov-Krasovskii (LK) 

functional approach [19]. It is well known that the LK 

based approach is less conservative than that of LR 

approach as it involves the delay information in the 

functional [4], [13]. Approaches proposed in [4], [20] by 

applying some bounding for some cross terms in the 

transformed system become conservative because the 

additional terms in the dynamics of the system affects the 

stability [4], [20]. A descriptor model transformation 

approach with some bounding techniques for some cross 

terms is proposed in [12], [20]. The proposed approach 

gives approach less conservative results by reducing the 

gap of classical model transformation approaches. For 

further reduction of conservatism, Jensen inequality 

based approach is proposed in [5], [19]. In the proposed 

approach, the authors avoid to use the model 

transformation and bounding techniques. Matrix variables 

are involved in [13], [14] for deriving the stability and 

stabilization criteria to reduce conservatism. 

Recently, controller design for uncertain time-delay 

system has got considerable attention. A lot of research 

articles are published in this domain; the Riccati equation 

approach [21], the LMI approach [3], [22]–[24], the H  

control theory [25], Sliding mode control theory [26], 

pole-placement technique [11], [27], model reduction 

method (i.e. transformation delay system to an equivalent 

delay free system) [28]. A robust static state feedback 

controller is designed in [29], [30] for uncertain time 

delay system. The proposed controller structure [29], [30] 
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is simple and easy for implementation. In [10], [31], a 

static state feedback controller of structure ( ) = ( )u t Kz t , 

where 
( )

0
1

0

( ) = ( ) ( )

t
A t s

t

z t x t e B u s ds




 



  is used. The 

proposed controller in [10], [31] is difficult to design and 

implement because of its integral part. In [30], a simple 

static state feedback controller is used with Jensen’s 

inequality based tighter delay bound to obtain less 

conservative result. 

This paper includes a design method for state feedback 

controller using an integral control action with 

proportional control action (alone it is memory less 

controller or static controller). This type of composite 

structure of the control action increases the degree of 

freedom as a result of which the robustness improves. To 

obtain less conservative result some important things are 

taken care such as: (i) Jensen’s inequality is used with 

tighter delay bound for integral approximation in the 

derivative of the functional, (ii) a simple linearization 

technique is used, (iii) more state variable are included 

with the system dynamics to obtain the delay-dependent 

LMI criteria. To show the ability of the deigned PI-

controller two academic examples are considered [10], 

[27], [31].  

The system description and some preliminary ideas are 

given in Section II. In Section III describes the stability 

analysis and controller designed for uncertain time-delay 

system. Section IV presents two numerical examples to 

show the effectiveness of the stabilization criterion and 

the conclusion of the paper is presented in Section V. 

II. SYSTEM DESCRIPTION AND PRELIMINARIES 

Consider a linear uncertain system with input delay  

 
0 1 2

2 1

x t A t x t B t u t B t u t t

x t t t



  

  

  
    (1) 

where ( )t  is the input delay assume to be time-varying 

in nature and satisfying 
1 20 ( )t     , 

2 1=    and 

0 ( )t   ; ( ) nx t R  is the state vector of the system; 

( ) nu t R  is the control input; ( ( ))u t t  is the delayed 

control input to the system and   is a continuously 

differentiable initial function. The objective in this paper 

is to design a state-feedback stabilizing PI controller for 

system (1). The controller structure is as follows: 

0

t

p Iu t K x t K x d                     (2) 

where pK  and 
IK  are the control gains to be designed 

such that the controller will be able to stabilize the system. 

To represent the controller in form of simple static state 

feedback controller structure, let us consider 

z t x t                                (3) 

and 

 

 

T
T Tx t x t z t                          (4) 

The control input (2) can be written as: 

p Iu t K K x t                         (5) 

The augmented form of (1) can be 

0 1 2x t A x t B K x t B K x t t          (6) 

where 

   0 0 1 1

0 0

( ) 0 ( )

0 0

A A t B B t
A B

I

    
   
   

 

 2 2

1

( )

0
p I

B B t
B K K K

  
    

 
 

The following lemmas will be used to derive main 

stability criterion. 

Lemma 1 (Schur complement :2011)  For given 

constant matrices 
1X , 

2X  and 
3X  of appropriate 

dimensions, where 
1 1=TX X  and 

2 2=TX X , then 

1

1 3 2 3 < 0,TX X X X  

if and only if 1 3

3 2

< 0

TX X

X X

 
 

 
 or 

2 3

3 1

< 0
T

X X

X X

 
 
 

. 

Lemma 2: For any constant matrix 
2 > 0R , arbitrary 

matrices 
1M , 

2M , 
1N , 

2N , the following inequalities 

satisfy:  

1
1

2

2

1 1 1 1 1 1

1 1

1 1 11

2

1 1

2 1 2 2 2 2

2 2

( ) ( )

( )

( ( )) *

( )

( ( ))

( )

( ( )) *

t

T

t

T T T

T

T

T T T

T

x R x d

x t M M M N

x t t N N

M M x t
R

N N x t t

x t M M M N

x t t N N





   






























      
    

      

      
      

     

      
    

      



2 21

2

2 2 2

( ( ))

( )

T
M M x t t

R
N N x t







      

       
     

    (7) 

where 1( )
= ,0 1

t 
 




 

 
Proof: Using Lemma 1 of [32], the following bounds 

can be written: 

1
1

2

2

1 1 1 1 1 1

1 1

1 1 11
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1 1

( ) ( )
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( ( )) *
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( ( ))

t

T

t

T T T

T
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






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    
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    (8) 
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
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    

      
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       

     



    (9) 

Combining both (8) and (9), one obtains (7). 

Lemma 3: For any arbitrary matrices 
1S , 

2S , 
3S , 

4S  

and 
5S  the following condition holds:  

 

1 2 3 4 5

0 1 2

2 ( )
T

T T T T T Tt S S S S S

x t A x t B Kx t B Kx t t





  

    
 (10) 

where 

1 2( ) = ( ) ( ) ( ( )) ( ) ( )
T

T T T T Tt x t x t x t t x t x t         

Proof: Using (6), one can write 

 0 1 2x t A x t B K x t B K x t t      (11) 

One obtains (10) by multiplying any factor with zero 

term (11). 

III. STATE FEEDBACK STABILITY ANALYSIS 

In sequel to the previous section, a robust stability 

criterion for systems with norm bounded uncertainty with 

input delay is presented as follows. 

Theorem 1: System (6) is stable if there exist matrices 

> 0P , > 0jQ , =1, ,4j , > 0iR , and arbitrary 

matrices 
kS , =1, ,5k , 

iM , 
iN , =1,2i , that satisfy 

the following LMI:  

2*

l
l

R

 
 

 
                  (12) 

where 

1 1 1= 0 0 0 ,
T

T TM N     

2 2 2 , =1,..,5= 0 0 0 , = [ ] ,
T

T T

ij i jM N       

3

11 1 1 0 0 1 1 1 1 1

=1

= ,T T T T T

i

i

Q R S A A S S B K K B S       

12 1 0 2 1 2= ,T T T T TR A S K B S    

13 1 2 0 3 1 3= ,T T T T TS B K A S K B S    

14 0 4 1 4= ,T T T T TA S K B S   

15 1 0 5 1 5= ,T T T T TP S A S K B S     

1

22 1 4 1 1 1= ( ) ,TQ Q R M M           

1

23 2 2 1 1 24 25 2= , = 0, = ,TS B K M N S            

4

33 3 2 2 3

=3

1 1

1 1 2 2

= (1 )

,

T T T

i

i

T T

Q S B K K B S

N N M M



  

    

          


 

1

34 2 4 2 2= ,T T T TK B S M N         

35 3 2 5= ,T T TS K B S    

1

44 2 2 2 45 4= , = ,TQ N N S            

2

55 1 1 2 5 5= .TR R S S     

Proof: Let us consider a LK functional as follows: 
2

=1

1

3 4

( ) ( )

1 1

1
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1

2

2

( ) = ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) .

t

T T

i

i t
i

tt

T T

t t t t

t t

T

t

t t

T

t

V t x t Px t x Q x d

x Q x d x Q x d

x R x d d

x R x d d





 

 



 

  

     

    
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



 











 





 

 

 

 

   (13) 

Differentiating the energy functional (13) with respect 

to time along the state trajectory of (6) is  

3

=1

4

=3

1 1 4 1 2 2 2

2

1 1 2 1 1

1

1
1

2

2

( ) = 2 ( ) ( ) ( ) ( )

(1 ) ( ( )) ( ( ))

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) .

T T

i

i

T

i

i

T T

t

T T

t

t

T

t

V t x t Px t x t Q x t

x t t Q x t t

x t Q Q x t x t Q x t

x t R R x t x R x d

x R x d







  

   

    

   











   

      
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









 (14) 

The stability of the (6) can be analyzed by checking ˙V 

(t) is less than zero or not, the R.H.S. of (14) is added to 

(10). Then, it becomes 

 
1 2 3 4 5

0 1 2

3

=1

4

=3

1 1 4 1 2 2 2

2

1 1 2 1

1

2 ( )

( ) ( ) ( ) ( ( ))

2 ( ) ( ) ( ) ( )

(1 ( )) ( ( )) ( ( ))

( )( ) ( ) ( ) ( )

( )( ) ( )

T
T T T T T T

T T

i

i

T

i

i

T T

t

T

t

t S S S S S

x t A x t B Kx t B Kx t t

x t Px t x t Q x t

t x t t Q x t t

x t Q Q x t x t Q x t

x t R R x t x





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 


  

    

 

   

      
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



 1

1
1

2

2

( ) ( )

( ) ( ) .

T

t

T

t

R x d

x R x d





  

   







 

(15) 

Approximating the two integral terms in the RHS of 

(15) using Lemma 2, (15) can be written as 

 1 1

1 2 1 2 2 2

T T Tt R R t              (16) 

Equation (14) is polytope of matrices and is negative 

definite if it’s two certain vertices are negative definite 

individually. Then, the stability requirement can be 

written as: 

1

2 < 0, =1,2.T

l lR l  1

2

T

l lR l   (17) 
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(1 )

( ) ( ) ( ) ( ( )) = 0

( ) ( ) ( ) ( ( )) = 0

< 0, =1,2

( ) (1 ) ( )

< 0, =1,2



Finally, using Schur Complement on (17), one obtains 

(10).  

IV. STATE FEEDBACK STABILIZATION 

To obtain the controller parameters of the PI controller, 

the above stability criterion is extended for stabilization 

criterion. The following robust stabilization criterion for 

uncertain input delayed system is presented. 

Theorem 2: System (6) is stable if, for arbitrarily 

chosen  ,  ,   and  , there exist matrices > 0P , 

> 0jQ , =1, ,4j , > 0iR , and arbitrary matrices 
1S , 

iM , 
iN , =1,2i , that satisfy the following LMI:  

2*

l l
R

 
 

 
                  (18) 

where 

1 1 1= 0 0 0 ,
T

T TM N     

2 2 2= 0 0 0 ,
T

T TM N     

, =1,..,5= [ ]ij i j with   

3

11 1 0 1 1 0 1 1

=1

= ,T T T T

i

i

Q R A S S A BY Y B       

12 1 1 0 1= ,T T TR S A Y B     

13 2 1 0 1= ,T T TB Y S A Y B     

14 1 0 1= ,T T TS A Y B    

15 1 1 0 1= ,T T T TP S S A Y B      

  1

22 1 4 1 1 1= ,TQ Q R M M           

1

23 2 1 1 24 25 1= , = 0, = ,T TB Y M N S             

4

33 2 2

=3

1 1

1 1 2 2

= (1 )

,

T T

i

i

T T

Q B Y Y B

N N M M

  

  

    

          


 

1

34 2 2 2= ,T T TY B M N          

35 1 2= ,T T TS Y B     

1

44 2 2 2 45 1= , = ,T TQ N N S            

2

55 1 1 2 1 1= ,TR R S S       

1

1 1 1 1 1 1= , = , = , =1,...,4,T T

i iS S P S PS Q S Q S i  

1 1 1 1 1= , = , =1,2, = .T T T

j j j jM S M S S N S N j Y KS  

Proof: For controller design or stabilization criterion, 

the proof of derived robust stability criterion, i.e Theorem 

1 can be referred. And the nonlinear terms in (12) can be 

eliminated by considering 2S , 3S , 4S  and 5S  as: 

2 1 3 1 4 1 5 1= , = , = , = .S S S S S S S S     

and then pre- and post-multiplying (12) by 

 1 1 1 1 1 1

1 1 1 1 1 1diag S S S S S S     
 

 

 

and its transpose respectively, and subsequently adopting 

the change of variables 

1

1 1 1 1 1 1 1 1= , = , = , = ,T T T

i i i iS S P S PS M S M S N S N S  

1 1 1=1,2, = , =1, ,4, = .T T

j ji Q S Q S j Y KS  

One obtains (18). 

To verify the above criterion proposed in this section, 

two numerical examples are considered in the next 

section. 

V. NUMERICAL EXAMPLES 

Example 1: Consider a system of (1) with [10]  

0 0 2( ) = ( ) ( ) ( ( )), 0,x t A A x t B u t t t     

0,(0) = ( ) = ( ), [ 0.2,0],x x u t t t    

where 

0 0 2

0 1 0 0 0
= , = , = , .

1.25 3 0 1
A A B q

q


     
      

      
 

Using Theorem 2, the maximum value of   (
max ) is 

achieved to be 28.7690 . The tuning parameters (  ,  , 

  and  ) are tuned at 2.5107 , 4.4885 , 2.9221  and 

0.9954  respectively by a controller = p IK K K   , 

where  = 33.1133 4.7441pK    and 

 = 0.0397 0.0008IK   , The designed controller is 

more robust than the existing controllers proposed in [10], 

[31]. To search the tuning parameters (  ,  ,   and  ), 

fminsearch function of MATLAB is used. A comparative 

analysis is presented in Table I. The simulation result 

(norm of the states of the system) is presented with 

( ) = [5, 2, 3, 1]x t    , [ 28.7690,0]t   as initial 

condition in Fig. 1 using the PI-type controller for 

= 28.7690max . The presented result in Fig. 1 shows that 

the states are stable. 

TABLE I.  COMPARISON OF ROBUSTNESS 
max  

Approach 
max  Structure of ( )u t  

[31] 7.2568 ( ) = ( )u t Kz t where 

( )
0

1

0

( ) = ( ) ( )

t
A t s

t

z t x t e B u s ds




 



   

[10] 10.8485 ( ) = ( )u t Kz t where

( )
0

1

0

( ) = ( ) ( )

t
A t s

t

z t x t e B u s ds




 



   

[30] 19.6688 ( ) = ( )u t Kx t  

Theorem 2 28.7690 

0

( ) = ( ) ( )

t

p Iu t K x t K x d   where 

 = 33.1133 4.7441pK   and 

 = 0.0397 0.0008IK    
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Figure 1. Variation of norm of the state vector with respect to time for 
Example 1 

Example 2: Consider another system of (1) with [10] 

0 0 1 2( ) = ( ) ( ) ( ) ( ( )), 0,x t A A x t Bu t B u t t t      

0(0) = , ( ) = ( ), [ 0.4,0],x x u t t t    

where 

0 0 1 2

0 0 0 0 1
= , = , = , = , .

1 5 0 0 0

q
A A B B q

q


       
        

       
 

In this case, the 
max  is obtained using Theorem 2 to 

be 1.8524 . The tuning parameters  ,  ,   and   are 

tuned at 1.2887 , 0.1741 , 0.3952  and 2.9147  

respectively by a controller = p IK K K   , where 

 = 2.3661 0.0035pK    and 

 = 0.0247 0.0074IK   , which is also more robust 

than the existing controllers in [10], [31]. A comparison 

with the existing results are presented in Table II. 

TABLE II.  COMPARISON OF ROBUSTNESS 
max  

Approach   
max   

[10]   0.5998  

[31]   1.4120  

Theorem 2   1.8524  

VI. CONCLUSION 

In this paper, an improved robust delay-dependent 

stabilizing criterion has been obtained by using a PI 

controller. By adding the integral control action with 

simple memoryless controller, the degree of the freedom 

of the controller is increased. The dimension of the search 

space is also increased. As a result of which the 

robustness is increased. To eliminate the nonlinear terms 

in stabilization criterion, a simple linearization approach 

is adopted to obtain LMI. Finally, two numerical 

examples are considered to show the effectiveness of the 

criterion. In both the cases, the present approach is more 

robust than the existing results. 
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