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Abstract—Concepts in complex network theory has emerged 

as an effective tool in dealing with investigations related to 

failures in power networks. The topological betweenness can 

be redefined as electrical betweenness subjected to power 

flow conditions and constraints. In this paper the power 

grid can be modeled as a directed graph in analyzing the 

properties of the complex network theory to identify critical 

buses which can create vulnerable failures of the network if 

removed due to unforeseen fault or an attack. The electrical 

betweenness metric has been considered for this purpose in 

order to assess the vulnerability of a power network. 

Simulation of an IEEE 57 bus network has revealed that the 

most critical bus has high degree of electrical betweenness. 

This paper has also highlighted the application of 

Distributed Generation (DG) in improvement of the 

betweenness metric as well as the voltage profile of the 

critical bus along with reduction in total system power loss 

following its incorporation at the most critical bus.  

 

Index Terms—complex network theory, electrical 

betweenness, distributed generation 

 

I. INTRODUCTION 

Modern power grid is highly interconnected and plays 

a pivotal role in fuelling infrastructure and electric market. 

Proper understanding of the vulnerable and critical 

locations in interconnected power grid provides 

invaluable information that may be used to inform power 

grid management practices leading to more realistic risk 

assessments and the development of defensive strategies 

to ensure network survival. Occurrences of grid failures 

in power system have been observed in many utilities 

across the world. In most of the cases it is initiated as a 

sequence of equipment failures or attack on the system 

that successively deteriorates the ability of the power 

network to continue its desirable functionality [1]. Such 

types of grid failures have caused large scale blackouts 

[2]-[3] and several researches have been reported in the 

literature in order to assess critical outages [4]-[7]. 

Complex network theory represents a useful 

framework in order to analyze the structure, dynamics 

and evolution of events or states in complex power 

network. In recent years there have been significant 

involvements in modelling the power grid from the 
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perspective of complex network theory [8]-[10]. Cao et al. 

[11] considered weighted line betweenness as an 

indicator to assess the network vulnerability. Lin et al. 

[12], Cheng et al. [13] considered directed electrical 

betweenness in order to examine the criticality of the 

power system.  

Since the study of topological structure of a power 

network can identify the physical behaviour of a power 

network hence it can provide useful information about 

vulnerability of the power grid when used in conjunction 

with electrical characteristics of the network using 

complex network theory [14]-[16]. In this paper an 

attempt has been made to measure the electrical 

betweenness of the IEEE 57 bus test system in order to 

assess the criticality of load buses. Renewable energy 

sources (DG) has been employed at the most critical bus 

to highlight its role in reducing the criticality of the key 

bus. The increase in steady state voltage profile and 

reduction in power loss following DG penetration in the 

selected location of the network has also been 

investigated in this paper. 

II. TOPOLOGICAL MODEL OF A POWER GRID 

The power grid can be abstracted into the complex 

network through the topological graph G={Vx,Ex}. It 

consists of two sets Vx and Ex, where the elements of 

Vx={v1,v2, ..., vN} are the nodes (or vertices, or buses) of 

the graph G, while the elements Ex={e1,e2, ..., eL} are its 

links(or edge, or lines). Denoting total number of nodes 

and links of the graph asN and L respectively, the 

association of nodes with each other can be related using 

adjacency matrix (A). This matrix would have order N×N 

if an edge eij exits between two nodes i and j, whose entry 

aij becomes one and zero otherwise.  

The graph theory is the basic concept from which 

complex network theory has been derived. As in graph 

theory, in complex network theory also, there are 

sequences of lines and nodes by which all vertices are 

connected in a network. The length of a sequence is the 

summation of edges constituting that sequence. A path 

between two nodes is defined as a sequence in which no 

node is repeated more than once. The path of minimal 

length between two vertices is known as geodesic 

distance i.e. shortest distance between them. It is obvious 
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that the transfer of energy between two nonadjacent buses 

depends on the buses and lines of the geodesic paths 

connecting those buses. Thus the vulnerability measure of 

a network element can be found out by counting the 

number of geodesics going through it and is defined as 

betweenness centrality of that element. The concept of 

pure topological betweenness has been extended by 

introducing some electrical properties. 

A. Topological Betweenness of Nodes  

Node betweenness of a node v in a topological network 

can be expressed as [17]. 
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where σij(v) is the number of geodesics from node i and 

node j through node v and σij is the total number of 

geodesics between i and j.   

B. Electrical Betweenness 

Though the pure topological approach can be 

employed to find critical elements of a topological graph 

of an electrical network, it does not serve the purpose of 

finding critical elements in power network as power 

system operation is subjected to some typical 

characteristics and constraints. Hence it is prudent to 

consider the topological betweenness in conjunction with 

electrical characteristics and may be redefined as 

electrical betweenness.  

Power transmission capability Cij being defined as the 

power injection at bus i when the first line of all the paths 

connecting the generation node i and the load node j 

reaches its limit, it can be expressed as [18] 
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where l

maxP  is the transmission limit of transmission line l 

and
l

ijf is the power transmission distribution factor of line 

l of the path joining generation node i to load node j. This 

is the change of power on line l for injection at generation 

bus i and withdrawal at load bus
l

ijj. f is obtained as the 

difference between the entries lif and 
ljf of the power 

transmission distribution factor (PTDF) matrix and can be 

calculated as [19] 
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However PTDF matrix (
l

ijf ) can be expressed as  

 
1l

ijf H ' B'   (4)  

where B N N   admittance matrix 

1
ij

ij

B ,i j
x

    

1
ii

j i ij

B
x

  

B
′ 
= Submatrix of B where slack bus column and row 

are eliminated from B (to avoid singularity slack bus 

column and row are eliminated), 

H = Transmission matrix of order L N  

1
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0lkH k i, j    

H
′
= Sub matrix of H where slack bus column is 

eliminated from H. 

Betweenness of a bus (node m) in a power network can 

then be defined as [20] 
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f ?∣ ∣is the sum of PTDF of all the lines 

connecting bus m, when power is injected at bus g and 

withdrawn at bus d. 

1
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d gd

g l
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C f∣ ∣is the transmission power taken by bus 

m when the power is transmitted from generator bus g to 

load bus d; G is the set of generation buses, D is set of 

load buses, NG is the number of generation buses, ND is 

the number of load buses and L
m 

is the set of lines 

connecting bus m. The set of electrical betweenness 

qualifies the contribution of a component to power 

transmission in a whole power grid and in this respect the 

criticality of the elements of the power grid can be 

assessed. 

III.  INCORPORATION OF DISTRIBUTED GENERATION 

Distributed Generation (DG) is one of the most 

promising solutions to meet the increasing load demand 

by reconfiguration of long lines carrying power over 

larger distances. Proper incorporation of DG not only 

facilitates desired performance of DG resources but also 

improves voltage profile, minimize optimum real power 

losses, increase reliability and improve power quality. 

Researchers have proposed several techniques [21]-[24] 

for suitable allocation of DGs for improving voltage 

profile and reduction of losses. Several methods of DG 

placement strategies are available in literature, although 

few have approached towards complex network theory 

[25]. But the improvement achieved with installation of 

DG has been limited to traditional aspects of power 

system only.  

However, incorporation of DG not only enhances the 

traditional features of power system described above but 

also improves topological parameters of complex 

network theory when power grid is abstracted as a 

complex network. In this paper, the role of application of 
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DG have been proposed for improvement of the 

betweenness metric as well as the voltage profile of the 

critical bus along with reduction in total system power 

loss. Simulation has been conducted to highlight that how 

incorporation of DG reduces the betweenness and hence 

the criticality of the most critical load bus. 

IV. SIMULATION 

The IEEE 57 bus system [26] has been considered in 

this paper to apply the concept presented here in order to 

study electrical betweenness of buses and check the 

ranking of their criticality. The modified single line 

diagram of the standard IEEE 57 bus system is shown in 

Fig. 1. Fig. 2 represents the topological network of IEEE 

57 bus system. 

 

Figure 1.  IEEE 57 bus system. 

 

Figure 2.  Complex network topology of IEEE 57 bus. 

Fig. 3 represents the graphical plot of criticality 

magnitudes as obtained from the measure of betweenness 

of load buses. The electrical betweenness of load bus 11 

being the maximum; it is followed by the load bus 

numbers 13, 16, 10. Thus the most critical load bus is bus 

number 11 and it is vulnerable against any unplanned 

outage and attack. Following incorporation of distributed 

generation in the most critical load bus (i.e. bus 11); the 

criticality magnitude for this bus reduces. Thus 

application of distributed generation reduces the 

criticality and ensures lesser vulnerability of most critical 

bus following unplanned outage or attack on the power 

network. 

 

Figure 3.  Electrical betweenness of load buses in IEEE57 bus system. 

Fig. 4 exhibits the decrement in magnitude of electrical 

betweenness of four successive load buses (which have 

high level of betweenness) following incorporation of DG 

at most critical load bus (i.e. bus 11 which has highest 

magnitude of betweenness). 

 

Figure 4.  Magnitude of electrical betweenness of 4 successive load 
buses. 

Load flow study was carried out after incorporation of 

DG to evaluate the losses. DG incorporation not only 

gave increased efficiency with reduced losses but also 

enhanced the voltage profile. It has been observed that 

the steady state voltage profile (Fig. 5) of load buses 

improve with incorporation of DG while the power loss 

in the network reduce from 28.12 MW to 24.32 MW. 

Hence employment of DG unit not only reduces 

betweenness (criticality) but at the same time decreases 

system vulnerability, improves power transmission, 
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increase in voltage profile making the grid more efficient. 

The role of DG penetration in improvement of complex 

network theory parameters is an important tool which can 

be employed to strengthen the infrastructure of power 

grid. 

 

Figure 5.  Voltage magnitude enhancement with implementation of 
Distributed Generation 

V. CONCLUSION 

In this paper, a typical power system (IEEE 57 bus 

system) has been considered as a complex network and it 

has been analysed in topological frame to assess the 

electrical betweenness of load buses. The results reveal 

that the most critical bus has high degree of betweenness 

indicating its proximity to vulnerable failure following 

unplanned outage and attack. Incorporation of DG at this 

critical bus reduces the magnitude of electrical 

betweenness thereby reducing the possibility of 

vulnerable failures against unplanned outage and attack. 

The DG incorporation has also benefitted the successive 

critical load buses to have their voltage magnitude 

improved while the system real power loss has reduced 

substantially.  
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