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Abstract—In order to avoid only considering seriousness of 

fault in contingency screening and ranking, a new method is 

proposed which is based on probabilistic insecurity index. In 

this paper, randomness, economy and volatility of wind 

power and load are considered. Besides, probability density 

functions of wind power and load are used to modify the 

model of expected loss. Firstly, according to typical fault set, 

dynamic security region and probabilistic insecurity index 

are determined. Then the volatility of wind power and load 

could be transformed into the volatility of generator trip 

and load shedding. Finally, based on modified model of 

expected loss, the proportion of expected loss of each 

contingency in fault set can be computed. Then use this 

proportion to screen and rank contingencies. Simulations on 

New England 10-generator 39-bus system show that based 

on this new method, contingencies could be screened and 

ranked rationally and accurately. 

 

Index Terms—contingency screening and ranking, 

probabilistic insecurity index, volatility of wind power and 

load, expected loss 

 

I. INTRODUCTION 

Wind power is an important renewable energy. Its 

development is conducive to energy conservation and 

emission reduction. However, its randomness, fluctuation 

and uncontrollability are challenges to traditional 

contingency screening and ranking strategies. A large 

number of power failure accidents around the world 

suggest that it is necessary to attach great importance to 

power systems security problems. Thus establishing, 

screening and ranking anticipated fault set are of great 

importance to the safe and stable operation of power 

system [1]-[3]. 

Great numbers of indexes, like state index and stability 

margin index, could be used to screen and rank faults [4]-

[10]. But in these cases only seriousness of contingency 

is considered. Faults probability, parameter uncertainty 

and economic loss are neglected. Thus, expected loss, 

based on probabilistic insecurity index, is a better index 

which could evaluate the operation of power system 

accurately. 

                                                           
Manuscript received October 1, 2016; revised December 14, 2016.  

Both generator trip and load shedding are important 

emergency control measures. Currently, studies of 

emergency control measures are mainly based on 

conventional power network structure. And the 

characteristics of wind power are not considered. In Ref. 

[11], detailed post-fault action process of power system 

and safety control device are studied. This study suggests 

that after the integration of large-scale wind power, the 

volatility of wind power would influence the 

effectiveness of generator trip inevitably. Ref. [12]-[15] 

suggest that in wind-thermal combined system, in order 

to maintain controllability of post-fault frequency and 

voltage, the proportion of thermal generator trip should 

not be high. Wind generator trip should be considered. 

Normally, the volatility of wind power could be 

eliminated by electric power system control. But in 

failure period, local power flow may change fast as a 

result of volatility of wind power. Thus, the fluctuation of 

wind power should be considered when expected loss 

index is used to screen and rank contingencies.  

In this paper, a new contingency screening and ranking 

method is presented. In order to consider volatility of 

wind power and load, probability density functions of 

wind power and load are used to modify expected loss 

model. Also, faults probability, parameter uncertainty and 

economic loss are considered. On the other hand, using 

dynamic security region to calculate probabilistic 

insecurity index can simplify calculation and increase 

calculation speed.  

II. PROBABILISTIC INSECURITY INDEX 

A. Dynamic Security Region 

Dynamic security region ( , , )i j t
 
is a vector set of 

active power in power injection space. i  refers to prefault 

network structure. j
 
refers to post-fault network 

structure. t  refers to the duration of this fault. When an 

active power vector Y  is given, if a power system can 

maintain synchronism after a fault, this vector Y  is in 

dynamic security region ( , , )i j t . Otherwise, this vector 

is out of dynamic security region. Many simulation 

experiments suggest that the boundary of dynamic 

International Journal of Electrical Energy, Vol. 4, No. 4, December 2016

©2016 International Journal of Electrical Energy 199
doi: 10.18178/ijoee.4.4.199-203

mailto:di002369@yahoo.com
mailto:hdongliu@126.com
mailto:yilezhao@tju.edu.cn


security region can be approximated by one or numbers 

of hyperplane which can be expressed as follows [16]: 
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where
1 2[ , ]na a aA is equation coefficient of 

hyperplane, and 
1 2[ , ]ny y yY

 
is critical active power 

vector. Also, n  represents the dimensions of injection 

space. Besides, 0a
 
is watch variable. Normal value is 1 

and conservative value is 0.9. Since dynamic security 

region method is a real-time algorithm, this new proposed 

method is suitable for real time framework. 

B. Probabilistic Insecurity Index 

Ref. [17] proposes a kind of probability insecurity 

model. Its physical significance refers to the unstable 

probability of power system after a contingency. But 

weather condition, fault type, line parameter and other 

factors are neglected in this model. This feature limits its 

engineering application. Using transmission line as an 

example, define probabilistic insecurity index 
sec ( )in iP l

 
as: 
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where i  is the number of transmission line. w  refers to 

weather condition. 0w   refers to normal weather 

and 1w   refers to bad weather. ( )w iP l  is fault 

probability function of line 
il  in weather condition w . 

k  refers to the type of fault. 1k   represents single-

phase earthing fault. 2k   represents two-phases 

earthing fault. 3k   represents two-phase short circuit 

fault and 4k   refers to three-phase short circuit fault. 

k  is the proportion of fault k . 
w  

is the proportion of 

weather condition w . x  is the distance between fault 

location and initial point of the line. 
0 ( )ix l  is the length 

of transmission line 
il . x ( )f x  is probability density 

function of x . r  refers to fault resistance value. 
r ( )f r  

is probability density function of r .  is fault-clearing 

time. ( )f   is probability distribution function of  . 

( ) ( )l,k,r,x,M y  
refers to security measure of certain faulty. 

III. PROBABILITY MODEL OF RANDOM FACTORS 

A. Probability Model of Fault Occurrence 

Fault occurrence probability can be depicted by 

Poisson distribution. Ref. [18] proposes a fault 

occurrence probability model of transmission line 

considering normal and bad weather condition. This 

probability model can be expressed as: 
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where 
0  is mean failure rate of line 

il . N  refers to 

duration of normal weather. S  refers to duration of bad 

weather. 
1  refers to the proportion of fault in bad 

weather condition. 

B. Probability Model of Fault Type 

The probability of these four faults, Single-phase 

earthing fault, two-phases earthing fault, two-phase short 

circuit fault and three-phase short circuit fault, can be 

obtained by using history data statistics. 

C. Probability Model of Fault Location 

Ref. [19] proposes a probability model based on 

discrete distribution and history data statistics. If 

transmission line is divided into M  sections, then this 

probability of fault location at u  can be depicted as: 

 u

u

u
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f
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f
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where 
uf  is the number of fault occurring at u section. 

D. Probability Model of Fault Resistance 

Assume that fault resistance obeys logarithmic normal 

distribution. Its probability density function can be 

depicted as: 
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E. Probability Model of Fault-Clearing Time 

Assume that the sum of actuation time of protection 

relay and breaker time obeys normal distribution. And 

detection time is not considered in this paper. Then this 

probability density function can be expressed as [20]: 
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F. Uncertainty Model of Wind Power 

Assume that wind turbines are variable speed turbines. 

Then output power characteristic can be depicted as:  
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where 
iv  is cut-in wind speed. 

rv
 
is rated wind speed. 

0v
 
is cut-out wind speed. 

rP  is rated power. 

For the sake of simplification, neglect wake effects and 

assume that each wind turbine is the same. Then the total 

wind power of wind farm can be expressed as:  

 
av w ww P N  (11) 

where 
wP

 
is the power of one wind turbine. 

avw
 
is the 

available wind power. 
wN

 
is the number of wind 

turbines. Then the probability density function of 
avw

 
can 

be depicted as:  

av

2/3

av av w1/3 1/3

w

1
( ) ( )

3 2
w

v

f w w aN
b N


   (12) 

1/3 2av w

w

2

[( ) ]

exp( )
2 v

w aN
v

bN






                 (13) 

G. Uncertainty Model of Load  

Uncertainty model of load can be expressed by load 

forecasting error which obeys normal distribution. Its 

probability density function is as follows:  

            
L
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L L L
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 (14) 

LP
 
is load forecasting error. 

L  
is standard deviation of 

forecasting error. 

IV. EXPECTED LOSS CONSIDERING VOLATILITY OF 

RANDOM FACTOR 

After fault, the loss cost of power system mainly 

includes cost of applied prevention measures and cost of 

unstability. Assuming that the fluctuated value of wind 

power and load is small compared with the value of 

generator trip and shedding load, the dynamic security 

region remains unchanged. According to the function of 

hyperplane, the output of wind farm is linear to the value 

of generator trip and the fluctuated load value is linear to 

the value of shedding load. Then the probability density 

function of the value of generator trip and shedding load 

can be calculated easily. The loss cost can be depicted as 

follows [21], [22]: 

 
c

m ms mo mDI I I I    (15) 

where 
msI  is the cost of device maintenance, device 

shutdown and device boot. 
moI  refers to opportunity cost 

of power generation which can be depicted as formula 

[16]. 
mDI  is load lost cost which can be expressed as 

formula [19].  
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where 
newC

 
is unit generation cost in fault period. 

oldC
 
is 

prefault unit generation cost. h  refers to the duration of 

fault. 
lostP  is the value of generator trip. 

 w(1 )f fa P p P     (17) 

w(1 )f fa P p P   
        

(18) 

fP
 
is predicted value of wind power and 

wp
 
refers to 

confidence coefficient. 
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penC
 
refers to load loss of unit power and 

shedP  is the 

value of shedding load.  

 
load load load(1 )b P p P     (20) 

load load load(1 )b P p P   
              (21) 

loadP
 
is predicted value of load and 

loadp
 
refers to 

confidence coefficient. 

When fault k  occurs at line l , expected loss 
kl

S
 
is as 

follows:  

            
k

c

insec mk( )l kS P l I 

 

                     (22) 

V. CONTINGENCY SCREENING AND RANKING 

To implement the proposed new method, the major 

steps are briefly explained in sequence as follows: 

Step 1: According to history data statistics, typical 

fault set 1 1( , , )nfL l l l  is established. 

Step 2: Based on each fault in typical fault set, 

calculate dynamic security and probabilistic insecurity 

index 
insec ( )P l . 

Step 3: Calculate probability density functions of wind 

power and load. Moreover, according to these functions, 

probability density functions of the value of generator trip 

and shedding load can be obtained. 

Step 4: Calculate loss cost 
c

mI
 
and expected loss 

kl
S . 

Step 5: Calculate the proportion 
kK

 
of expected loss 

of each fault in fault set.  
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Threshold value 
 
is given. If 

kK  , then this fault 

k  is in the candidate set. If 
kK  , then this fault k  is 

out of the candidate set. 

Step 6: Examine fault set to ensure that all faults in this 

fault set have been considered. Assume that this 

candidate set 
1 1( , , )mS l l l  has m  faults. Screen and 

rank them according to their expected loss.  

VI. SIMULATION 

In this section, simulation is presented based on 10-

generator 39-bus New England system. The detailed 

network topology of this system is shown in Fig. 1. 

Assume that wind power is at bus 37 replacing the 

original synchronous generators with the same generating 

capacity. A fiercely fluctuating load, like charging station, 

is at 16. Beyond that, the value of   is 0.001. 4k   
and 0w  .  

Detailed information is depicted in Table I. Symbol + 

suggests that this fault is in candidate set and symbol - 

suggests that this fault is out of candidate set. We can 

also find that faults 3-4, 26-27, 3-18, 17-18, 25-26, 4-5, 

7-8, 1-2 are out of candidate set. Because these faults are 

not serious fault, it is not necessary to take any safety 

control measures. But for these faults in candidate set, 

safety control measures must be taken. Furthermore, we 

can easily find that the probabilistic insecurity index of 

fault 26-29 is quite small, but its expected loss is quite 

large. Thus it is reasonable to put this fault in candidate 

set. In this case, if we use traditional method to screen 

contingencies, this fault may be neglected and may cause 

serious consequences. Moreover, screen and rank the 

contingencies in candidate set again without considering 

the volatility of wind power and load. Results are shown 

in Table II. It can be found that the order of fault 8-9 is 

changed and fault 6-7 is removed out of the candidate set. 

Besides, expected loss in Table II is slightly different 

with that in Table I. Therefore, this new method can 

screen and rank contingency accurately and rationally.  
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Figure 1.  10-generator 39-bus new England system 

TABLE I.  DATA TABLE CONSIDERING VOLATILITY 

Typical 

fault set 

Probabilistic 
insecurity index 

(10-4 ) 

Expected loss 
(ten thousand 

yuan) 
kK

 
Selection 

28-29 0.71164 90.96877 0.52240 + 

23-24 0.91157 8.26624 0.05260 + 

26-29 0.00830 8.22115 0.05910 + 

8-9 1.00000 7.61435 0.05003 + 

2-3 0.88472 6.76163 0.04676 + 

10-11 0.99999 6.37794 0.04177 + 

15-16 0.91361 5.60906 0.04043 + 

1-39 0.92698 5.20249 0.03300 + 

22-23 0.08865 4.60153 0.02723 + 

21-22 0.36231 2.01720 0.01983 + 

9-39 0.14711 1.00726 0.00696 + 

6-7 0.00167 0.51720 0.00064 + 

26-28 0.00739 0.30212 0.00197 + 

3-4 0.00001 0.05050 0.00032 - 

26-27 0.00001 0.02080 0.00013 - 

3-18 0.00001 0.02060 0.00013 - 

17-18 0.00010 0.01170 0.00007 - 

25-26 0.00002 0.01150 0.00006 - 

4-5 0.00001 0.00970 0.00006 - 

7-8 0.00001 0.00960 0.00006 - 

1-2 0.00001 0.00880 0.00006 - 

TABLE II.  CANDIDATE SET WITHOUT CONSIDERING VOLATILITY 

Typical 
fault set 

Probabilistic 
insecurity index 

(10-4 ) 

Expected loss 
(ten thousand 

yuan) 
kK

 
Selection 

28-29 0.71164 81.6591 0.52240 + 

26-29 0.00830 9.23790 0.05910 + 

23-24 0.91157 8.30480 0.05260 + 

8-9 1.00000 7.82030 0.05003 + 

2-3 0.88472 7.30938 0.04676 + 

10-11 0.99999 6.52970 0.04177 + 

15-16 0.91361 6.31942 0.04043 + 

1-39 0.92698 5.15870 0.03300 + 

22-23 0.08865 4.25640 0.02723 + 

21-22 0.36231 3.10038 0.01983 + 

9-39 0.14711 1.08849 0.00696 + 

26-28 0.00739 0.30770 0.00197 + 

6-7 0.00167 0.09970 0.00064 - 
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VII. CONCLUSION 

This paper, based on probabilistic insecurity index, 

proposes a new contingency screening and ranking 

method. A large number of experimental data suggest that 

the volatility of wind power and load would have 

negative impact on the effectiveness of generator trip and 

load shedding. Thus it is necessary to consider the 

fluctuation of wind power and load in contingency 

screening and ranking. The expected loss model can be 

modified by using probability density functions of wind 

power and load. Clearly, randomness, economy, volatility 

and severity are all considered in this new method. 

Simulations on New England 10-generator 39-bus system 

shows that based on this new method, contingencies 

could be screened and ranked accurately and rationally.  
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