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Abstract—This paper presents an optimal planning and 

operation of wind turbines, photovoltaics, and SCs 

simultaneously for Volt/Var control in microgrids. In 

planning stage, net present value of total investment is 

maximized comprising investment cost, operation cost and 

cost of energy transaction with grid. The reactive power 

dispatch optimized during microgrid operation. The 

proposed Volt/Var model considers the probabilistic 

behavior of wind, solar irradiation and demand 

simultaneously which is solved by genetic algorithm. The 

proposed approach is tested on IEEE-33 bus distribution 

system that is used as microgrid.  

 

Index Terms—distributed resources, distribution networks, 

genetic algorithm, renewable resources, shunt capacitor, 

volt/var control 

 

I. INTRODUCTION 

In distribution systems, Volt/Var Control (VVC) is 

always been an important issue to maintain smooth and 

steady voltage profile across system nodes. Traditionally, 

VVC is achieved by controlling the tap positions of On 

Load Tap Changers (OLTCs), Feeder Voltage Regulators 

(FVRs), Shunt Capacitors (SCs) etc. However, excessive 

operation of Volt/Var devices is not desirable as it 

increases tap changers wear and tear that affects the 

operational life of the equipment/device [1].  

The increasing global energy crisis, greenhouse gases 

emission from traditional power plants and several 

advances in small-scale generating units have led to the 

large-scale deployment of Distributed Generations (DGs) 

in distribution systems. The optimally integrated DGs 

may bring undeniable and enormous benefits to DG 

owner, utility and consumers such as reduced annual 

energy loss [2], [3], improved voltage profile [3], 

enhanced reliability [3]-[5], stability [3], [6], reduced 

energy price etc. 

The prominence of DGs in distribution systems has 

considerably affected the VVC, which is the one of the 

important duties of any distribution system operator [2]. 

The intermittent and uncertain power generation of solar 

and wind based DGs along with the load uncertainty 

further increases the complexity of VVC. However, 

injecting large amount of reactive power from the DGs 

for improvement of voltage profile may lead to high field 

current, overheating of generator, triggering the 
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excitation limit and disconnection of the DG from the 

system to protect the generator [3]. In comparison to DGs, 

variable SCs can provide cheaper VVC solution for 

microgrids but capacitors tap-changer may introduce 

voltage transients in the system. 

A variety of methods has suggested in literature to 

solve VVC issues in distribution systems in the presence 

of DGs. The literature review on VVC issues may be 

broadly classified into planning stage and operational 

stage. For planning stage, Dadkhah and Venkatesh [7], 

proposed a cumulant-based stochastic method to provide 

SCs reactive power support in wind turbine integrated 

distribution system. The reactive power and voltages are 

dependent variables and change in one might result in 

opposite effect on other [8]. The PQ and PV models of 

DGs are considered at specified Lagging Power Factor 

(LPF) to provide reactive power support. Moreover, 

simultaneous active and reactive power planning may 

bring more benefits in terms of loss reduction and VVC. 

A multiobjective harmony search approach is proposed in 

[3] to minimize power loss and to improve voltage profile 

via optimal DG placement in distribution systems. A 

scenario-based stochastic multiobjective VVC control 

planning with renewables is proposed in [2]. A Taguchi-

based approach is introduced in [9] to minimize power 

loss and to improve voltage profile by optimal allocation 

of unity power factor DGs. 

Now some of the research work of operational stage is 

discussed. Ref. [4] proposed a daily VVC based on fuzzy 

adaptive particle swarm optimization to provide reactive 

power support by dispatchable DGs operated at specific 

LPF. A wireless communication based distributed VVC 

is proposed in [8] to find the online optimal control of 

regulating devices. A synchronous machine based DG is 

introduced in VVC of distribution system in [5] via 

generator excitation control. However, only the point of 

common coupling bus is considered as the voltage 

reference node in the control scheme. Similarly, in [10], 

the effect of solar photovoltaic (PV) integration on 

voltage regulation scheme is studied by finding optimal 

set point of PV inverters. A time based scheduling 

problem to avoid unnecessary change in the state of 

reactive power injecting plants is considered in [6] and 

the VVC problem is solved by a heuristic approach.  

In available literature, VVC problem is solved either in 

planning or in operation stage. In this paper, the problem 

is solved simultaneously for planning and operation. A 

stochastic Volt/Var planning and operation for microgrids 
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is proposed comprising probabilistic model of PVs, WTs, 

load etc. In planning stage, the aim is to optimally 

integrate PVs, WTs and SCs simultaneously such that the 

Net Present Value (NPV) of microgrid is maximized. The 

considered objectives for planning stage comprises of 

investment, operation and maintenance cost of DGs & 

SCs and grid energy transaction cost in the planning 

horizon. For the optimal operation of microgrid, dispatch 

of reactive power from installed SCs is determined to 

maximize the benefit of installed DG and SCs. In this 

stage, the annual energy loss and voltage regulation of 

microgrid system comprise the optimization objectives. 

Genetic Algorithms (GA) is a well-established and 

proven method to solve similar mixed integer, non-linear 

optimization problems and has the capability to explore 

global optima efficiently [3], [10]. [11]. Therefore, GA is 

adopted for both stages to solve proposed stochastic VVC 

problem. 

II. PROBLEM FORMULATION 

The energy consumption depends on the customer 

usage behavior, which is highly uncertain and varies from 

customer to customer. Similarly, renewables are 

intermittent and uncertain by nature. An approximated 

stochastic modeling is required to deal with the 

uncertainty and intermittency of load and generation. The 

local real power support from natural resources is a major 

motivation behind DG integration in distribution systems. 

However, it may not be economical to supply reactive 

power by DG, which has significantly higher per KVA 

cost compared to SCs. A simultaneous integration of DGs 

and SCs is considered to solve microgrid Volt/Var issues 

in planning and operation. For the purpose, the 

probabilistic model of load, wind speed, and solar 

irradiation are considered 

A. Probabilistic Modeling of Solar Power Generation 

and Load Demand 

Generally, solar irradiation forecasting techniques are 

used to forecast the solar irradiation by using previous 

years irradiation data. However, many researchers have 

modelled the solar irradiation behavior as normal or 

Gaussian probabilistic distribution [2]. In this study, solar 

Function (PDF). The associated PDF is shown in Fig. 1. 

The Gaussian PDF for ith bus can be expressed as in [7] 

 
2

2
2

1 ( )
( ) exp

22

i i

i
i

x
f x




  
  

 
 (1) 

where µi and σi represent mean and standard deviation of 

solar irradiation for bus i.  

 

Figure 1.  Gaussian PDF of annual solar irradiation. 

The solar irradiation is assumed to be same for all 

buses of microgrid due to geographical proximity.  Hence, 

same probability distribution parameters can be 

considered for all buses. Unlike in [2], [7], [12], data of 

each hour is fitted in normal PDF to generate 24 hours 

load and generation profiles for statistical analysis. The 

considered interval for normal PDF is µ ± 3σ with 99.7% 

probability, which is further divided into NPV segments of 

equal size. The tth segment with average irradiation value 

PGpv has an area or probability ppv. The PVs produce real 

power as a function of solar irradiation and some module 

parameters such as panel’s area, tilt angle, temperature, 

efficiency etc. Without loss of generality and simplicity 

of the problem, module parameters are assumed constant 

during operating hours except solar irradiation. The PV 

power generation at ith bus can be expressed as linear 

function of solar irradiation [12].  

 _ ( )Solar

iPG lin fun Irradiation  (2) 

For each hour, the average data and its corresponding 

probability for all segments are stored for auxiliary 

analysis. Similarly, load demand also follows the normal 

probability distribution [2], [7], [12]. Hence, same 

probabilistic model has been adapted for load modeling. 

The ND number of pairs of normal distribution is kept as 

reference for further analysis, which contains the load 

factor and respective probability (PDi
Wind

, pd) for each 

segment of each hour. 

B. Probabilistic Modeling of Wind Power Generation 

The wind speed is uncertain by nature thus requires 

probabilistic modeling. Many researchers have modeled 

the wind power generation PDF; in order to analyze 

planning and operational issues in distribution systems 

[2], [7], [12]. In this paper, the annual wind speed is 

modeled as Weibull distribution function as shown in Fig. 

2. The Weibull PDF is expressed as in [7]. 
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where wi is the wind speed in m/s, γ and βi are the shape 

and scale parameters of Weibull probability distribution 

parameters respectively. For multiple wind generators, 

these parameters assume to be same, as all WTs install in 

a same geographical area. Next, Weibull PDF of each 

hour’s historical data is calculated. The probability of 

each hour is divided into NW segments of equal width. 

 

Figure 2.  Weibull PDF of annual wind speed. 

The WT produces real power as a function of wind 

speed and other turbine parameter such as sweeping area, 

pitch angle, air density etc. However, these parameters 
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assumed to be constant for all hours except wind speed. 

Therefore, using appropriate transformation, wind speed 

can be converted into the real power as a cubic function 

of wind speed [12] 

 _ ( )Wind

i iPG cubic fun w  (4) 

The NW pairs of wind power generation PGi
Wind

 and its 

corresponding probability pw, (PGi
Wind

, pw) are kept for 

further studies. 

C. Complete Probabilistic Modeling of System 

Following the previous section, a probabilistic model 

of complete system is discussed in this section. In this 

probabilistic model, each hour has NPV, Nw, and ND set of 

possible values for solar, wind and load power 

respectively along with their corresponding probabilities. 

Hence, for each hour, system can have NPV×Nw×ND 

number of possible states and each probable state [(w, d, 

pv) ε (NPV×Nw×ND)] has a probability of (pd×pw×ppv) 

[12]. However, it is not always true as these are 

dependent parameters. Fig. 3 shows the possible 

probabilistic outcome for wind, solar and load data for a 

particular time. Each sub-cube shown in Fig. 3 contains 

the total probability, (pd×pw×ppv) for microgrid. 

 

Figure 3.  Structure of probabilistic model of complete system. 

D. Roulette Wheel Based Stochastic Scenario 

Generation 

In this section, stochastic profile of load, power 

generation from solar PVs and WTs are generated for 24 

hours. In the proposed stochastic model, Roulette Wheel 

Selection (RWS) criteria is adopted which is itself a 

probabilistic model.  For each hour, roulette wheel is 

spun to select a probabilistic outcome for system load, 

PVs and WTs generation independently unlike the model 

proposed in [12]. The RWS criterion selects a more 

probable outcome based on their respective probabilities 

but least probable outcome may also get select and 

increases the diversity of the system model. 

E. Objective Function 

In this section, simultanious planning of PVs, WTs and 

SCs is formulated in order to maximize the various 

integration benefits. The objective is to identify optimal 

locations and sizes for DGs and SCs such that the NPV of 

the project is maximized. The objective considered for 

optimal operation of microgrid is to minimize real power 

loss and voltage deviation. The objective function is 

defined as: 

 = Before After
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where, ( )Before

GridP h  and ( )After

GridP h  represent power purchase 

from the grid before and after DG integration in hth hour. 

Tp, d, CE(h), Pi(h), φ, N, SWT, SPV, QSC, ( )WT

iP h , ( )PV

iP h , 

Vi(y,h), Iij(y,h), rij represent number of planning years, 

discount rate, grid energy cost, total real power drawn by 

microgrid in hth hour, hourly to annual cost conversion 

factor, total number of  buses in microgrid, installed 

capacity of WTs, PVs, SCs , power generated from WTs, 

PVs in hth hour, voltage at ith bus, current in the branch 

connected between bus i and bus j in hth hour of year y 

and its maximum current carrying capacity, resistance 

respectively. The cost of energy purchase, installation, 

operation and maintenance cost of WTs, PVs and SC are 

represented by CE(h), ,WT

InstC  ,PV

InstC  ,SC

InstC  
& ,WT

O MC  
& ,PV

O MC  

&

SC

O MC  respectively. Constants αi, βi, and γi are the binary 

decision variable that a particular type of DG or SC is 

installed at bus i or not. 

It has assumed that before DG integration main grid 

supplied the total load demand of distribution system. 

Hence, (5) comprises the total cash outflows used for 

energy purchased from the main grid in planning horizon 

before DG integration. The future cash outflow of 

microgrid is expressed in (7). It includes the cost of grid 

energy purchase, various investment and running costs 

etc. The revenue generated from energy selling will be 

the same for both the cases; hence, does not affect the 

NPV. Equation (9) and (10) express the Voltage and 

thermal limit constraints respectively. The total DG 

penetration is constraint by the microgrids annual peak 

demand. 
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III. GENETIC ALGORITHM FOR DG & SC INTEGRATION 

To solve the proposed stochastic model for DG and SC 

simultaneous planning, a powerful optimization 

technique GA has adopted. GA is a bio-inspired 

optimization technique, which has strong ability to obtain 

the global optima for complex optimization problems 

compared to MIP and analytical methods. The technique 

is widely used and successfully solved engineering 

problem of diversified areas [3], [10], [11]. Moreover, the 

researchers have proposed many improved variants of 

GA. In this paper, an improved variant of GA is used 

from [13]. The individual’s structure used for this work is 

shown in Fig. 4, which holds the location and capacities 

of WTs, PVs and SCs respectively.  

1 4 11 4 1 41 144 4

PVWT WT WSC SC SCPV P SCVT W VT PL L SL L SL L S S SS

SCs locationsWTs locations WTs sizesPVs locations PVs size SCs sizess

 

Figure 4.  Individual’s structure for GA. 

Various infeasible population/solution may generate by 

GA. Therefore, to convert all infeasible population/s into 

the feasible population a correction algorithm is applied. 

For optimal operation of microgrid, individual structure 

will contain the capacitors tap positions only. 

IV. RESULTS AND DISCUSSIONS 

In order to test the proposed stochastic planning and 

operation model of VVC for microgrids, we selected 

standard IEEE 33-bus distribution system as a microgrid. 

The system is used in [14] as a microgrid. The basic 

information of this system can obtain from [15]. The 

investment & operation cost of DGs, discount rate, 

annual load growth, number of planning years etc. are 

taken from [14]. The installation cost of SCs has chosen 

from [11]. The annual operation and maintenance cost of 

SCs is equals to 525.6$ for each 300 kVar SC bank. The 

considered planning horizon is TP = 20 years. The hourly 

grid energy price referred from [16].  

Initially, φ = 365 random samples are generated for 

each hour by using RWS discussed in Section II. In order 

to reduce computation burden and without loss of 

generality of proposed model mean value of generated 

data for each hour is considered. The mean values of 

stochastically generated data for wind speed, solar 

irradiation, and Load Factor (LF) along with 

deterministic LF are shown in Fig. 5. These profiles used 

to do calculation for planning and operations of microgrid. 

Table I shows the optimal locations and sizes of DGs and 

SCs for microgrid.  

The obtained optimal installed peak-peak penetration 

of WTs and PVs are 50% and 4% respectively, which are 

percentage of 1st year’s annual peak demand. The 

calculated stochastic capacity factor for WTs, PVs, and 

SCs are 20.99%, 23.22%, and 19.09% respectively, 

which are close to the real life capacity factor of such 

plants.  

Due to load and generation variability, an optimal 

control of reactive power dispatch from installed SCs is 

required in order to minimize energy loss for 20 years 

and to keep microgrid bus voltages within the specified 

limits. This is achieved by finding the hourly optimal tap-

settings of installed SCs. The taps assume to be set on 

each 50 kVar. Hence, each SC bank can have maximum 

of six taps. Fig. 6a and 6b show the optimal tap setting of 

SCs for first and last (i.e. 20th) year respectively. 

 

Figure 5.  Mean profile of stochastically generated data for (a) wind 
speed (b) solar irradiation (c) LF and (d) deterministic LF. 

TABLE I.  SIMULATION RESULTS 

Scenarios 
WTs 

Location 
and Sizes 

PVs 
Location 
and Sizes 

SCs 
Location 
and Sizes 

NPV 
(M$) 

Base case - - - 00.0000 

Optimal 
planning 

08(750) 
11(750) 

33(750) 

29(750) 

17(30) 

12(210) 

15(600) 
07(600) 

24(300) 

30(900) 

13.6771 

Optimal 
operation 

-do- -do- Variable 13.9017 

 

 

Figure 6.  Optimal tap settings of SCs in (a) 1st year and (b) 20th year. 

In this work, variable SCs are the only units, which 

control the microgrid bus voltages, as DGs are non-

dispatchable and assumed to be operating at unity power 

factor. All SCs control the voltages simultaneously. From 

the figure, it is observed that the number of tap staggering 

in 1st year are high compared to 20th year due to 

relatively high penetration of SCs in 1st year.  

The box plots of voltage profiles of all 20 years are 

shown in Fig. 7a, 7b and 7c for base case, after VVC 

planning and operation respectively. It shows that no bus 

violates the voltage limit constraint in both planning and 
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operation of microgrid. Fig. 7c shows better voltage 

regulation in microgrid compared to 7b because of 

optimal VVC in microgrid optimal operation. Fig. 7d 

shows the box plot of 20 years stochastic load variations.  

 

Figure 7.  Box plots of 20 years microgrid VVC (a) voltage profile for 
base case (b) voltage profile after planning (c) voltage profile after 

operation and (d) stochastic LF. 

V. CONCLUSION 

In this paper, a stochastic model of Volt/Var planning 

and operation for microgrids is presented comprising 

probabilistic behavior of load, wind speed, and solar 

irradiations. The simulation results show that a 

simultaneous DGs and SCs planning is more beneficial 

because SCs provide cheaper voltage regulation and 

reduced annual energy loss in microgrids compared to 

DGs. In microgrid operation, optimal reactive power 

dispatch via tap staggering of SCs significantly improves 

voltage regulation and reduces energy loss. In future, low 

cost dispatchable DGs or storage may be installed 

simultaneously with renewables and SCs to reduce the 

degree of renewables uncertainty for large systems. 
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