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Abstract—The paper presents a nonlinear modeling of the 

PEMFC using Neural Network Auto-Regressive model with 

eXogenous inputs (NNARX) approach. The Multilayer 

Perception (MLP) network is applied to evaluate the 

structure of the NNARX model of PEMFC. The NNARX 

model structure is according to the Optimal Brain Surgeon 

(OBS) methodology to indicate the significant network 

structure. The validity and accuracy of NNARX model are 

tested by one step ahead relating output voltage to input 

current from measured experimental of PEMFC. The 

results show that the obtained nonlinear NNARX model 

based on OBS technique can efficiently approximate the 

dynamic mode of the PEMFC and model output and system 

measured output consistently.  
 

Index Terms—PEMFC, NNARX, Optimal Brain Surgeon 

(OBS), Neural Network (NN) 

 

I. INTRODUCTION 

Fuel Cell (FC) technologies development and 

commercialization motivation is concerned with 

increasing environment and resource issues. Polymer 

Electrolyte Membrane Fuel Cell (PEMFC), as a 

renewable energy source, is one of the most promising 

fuel cells due to their compact modular, high efficiently 

and good stability. Because of its advantage, PEMFC is 

demanded as a dependable power sources for many 

application such as distributed power generation and 

automobile [1], [2]. 

PEMFC is an extremely complex nonlinear multi-input 

and multi-output and coupled dynamic system. The 

performance of PEMFC can be represented by a current-

voltage relation that is influenced by levels of internal 

influential parameters such as gas flow channel design, 

relative humidity ratio, operation temperature or pressure, 

                                                           
Manuscript received July 2, 2015; revised December 25, 2015. 

stoichiometric flow rate, and others. All these parameters 

have strong impacts on PEMFC performance, and are 

related to each other by nonlinear behaviors. The inner 

working processes are accompanied with liquid, vapor, 

gas-mixed transportation, heat conduction and 

electrochemical dynamic reaction. For such kind of 

nonlinear system of PEMFC, yet there is no standardized 

procedure neither to estimate a matching mode structure 

not to select a suitable types of models. During the last 

several decades, various mechanism models of PEMFC, 

based on mass, energy and momentum conservation laws, 

has received much attention in an attempt to better 

understand the phenomena occurring within the cell, and 

a variety of mechanism models have been established in 

previous research [3], [4]. In open literatures, these 

models characteristics focused on FC operating condition 

such as temperature effects, reaction gas transportation 

phenomena, heat management, etc. Each parameter with 

according to the operating conditions will exert different 

effects to improve the performance and define 

quantitative determination whether the effects of 

operating factors are necessary on the PEMFC. These 

models are very useful for analyzing the transient 

characteristic, but they are too complicated to be used for 

control system design. 
For the purpose of dynamic control of real system in 

future work, precise dynamic characteristic model of the 

PEMFC are necessary. However, no matter what kind of 

models, there must be some errors between the models 

and real performance of the PEMFC because assumptions 

and approximations are made in modeling for computing 

simplify. In order to improve the accuracy of mechanism 

models and make the models reflect the actual PEMFC 

performance better, it is necessary to mode the structure 

of the models using nonlinear model approach. Most 

dynamic systems can be better described by nonlinear 

models, which are able to present the whole behavior of 
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the system during the all operating condition [5]-[7]. 

Motivated by this need, an attention has been paid to 

identification of nonlinear dynamical systems. The 

nonlinear dynamic systems behavior has made the 

employ of Artificial Neural Network (ANN) for the 

modeling task in recent decades [8], [9]. In addition, all 

the numerical studies have proven the Multilayer 

Perceptron (MLP) neural networks match very well for 

nonlinear system identification. In the process of training 

neural network, the regularization can be generalizing the 

trained model. 

In this work, a nonlinear model approach, consisting of 

a Neural Network Auto-regressive model with 

eXogenous inputs (NNARX) approach is adopted to 

model the nonlinear dynamic of the PEMFC. The paper 

organized as follows: Section II gives a description of 

NNARX model approach. Section III presents the results 

of modeling of PEMFC based on NNARX approach. 

Section IV is the conclusion. The proposed nonlinear 

modeling of the PEMFC based NNARX approach 

procedure is graphically summarized in Fig. 1. 

The goal of this work is to optimize a neural network 

architecture based on multilayer perceptrons by 

eliminating non-useful weights and bias and to improve 

its generalization in the performance of PEMFC. To 

achieve aims we used an algorithm called Optimal Brain 

Surgeon (OBS) to perform the pruning. The approach to 

network pruning is based on the information on second 

order derivatives of the error surface in order to 

determine the weights or bias that can be removed 

without performance degradation. 

 

Figure 1.  Nonlinear model of PEMFC procedure 

II. NEURAL NETWORK AUTO-REGRESSIVE MODEL 

WITH INPUTS (NNARX) MODELING 

APPROACH 

Modeling is an important issue in the process of 

parameter estimation. Auto-regressive eXogenous models 

have been employed extensively to represent the 

relationship of the system output with the system input in 

the present of noise in many linear systems. In the 

process of parameters estimation, the Levenberg-

Marquardt (LM) algorithm is usually used in Neural 

Networks (NN) method. In order to meet a closer 

approximation to the real system, nonlinear ARX models 

are used, which are modeled by means of NN. The 

Multilayer Perceptron (MLP) network is one of the most 

studied members in the NN. The primary of MLP neural 

network reason is its ability to model simple as well as 

complex functional relationships. The LM algorithm 

minimizes the mean-square error of the prediction errors 

for the nonlinear ARX model, which is as particular case 

of a nonlinear Neural Network ARX model (NNARX), as 

described in after [10]-[13]. 

A. NNARMAX Model 

A general linear system ARX empirical model can be 

described by the following equation: 

1 1
( ) ( ) ( ) ( ) ( )A q y k B q u k e k

 
                  (1) 

where y(k) denotes the system output or autoregressive 

(AR) factor; u(k) is the system input or exogenous (X) 

factor, e is the white noise or disturbance and 
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is thus based regression vector: 
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where 
a

n  is number of output poles; 
b

n  is the number of 

input zeros and 
k

n  is the system time delay. In order to 

estimate the parameter of nonlinear ARX model structure, 

the NN can be done. The neural network version of ARX 

model structure is defined as Neural Network ARX 

(NNARX). The NNARX model structure is presented in 

the Fig. 2. The relationship between input-output 

structures of NNARX mode can be shown by: 

( ) [ ( ), ] ( )y k g k e k                         (5) 

 

Figure 2.  NNARX model structure approach. 
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The One-Step-Ahead (OSA) prediction of the NNARX 

model structure is defined by: 

( ) [ ( ), ]y k g k                             (6) 

where g is the function realized by the multilayer 

perceptron neural network method. 

B. Multilayer Perceptron (MLP) Network 

The Multilayer Perceptron (MLP) network is one of 

most used of the NN family; because of its enable simply 

represent complex function. The class of MLP NN meted 

with three layers: an input, an output and hidden layer. In 

the hidden layer (j) of each neuron, the sums up of input 

data 
i

x  after weighting them with strengths of the 

respective connections 
ji

w  from the input layer and 

computed output 
j

y  as a function of the sum: 

1

( )

q

j ji i

i

y f w X


                              (7) 

where the function ( )f   can be linear, threshold, sigmoid, 

hyperbolic tangent and radial basis. In this paper, 

hyperbolic tangent functions are considered for the 

neurons in the hidden layer and linear function for the 

output layer neurons, respectively. The output of the 

MLP presented: 

0 0

1 1
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where q is hidden neurons, wji between input and hidden 

neuron weighting, wij between hidden neuron and output 

weighting and m is input number. The weighting w and W 

of are the adjustable parameter of the network and 

determine through the training process. The sets of 

training inputs data u(t) and corresponding outputs y(t) 

defined: 

{[ ( ), ( )] 1, , }
N

Z u k y k k N                   (9) 

The goal of training is to meet a mapping from the 

training data set to the set of possible weights 
N

Z  , 

so that the network will produce the close to the true 

outputs y(k). The prediction error measurement is often 

described by a function required as the loss function. The 

general form can be depicted as: 

2

1

1
( , ) ( , )

2

N
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In (10) is used to simplify differentiation when 

minimizing residual ( , ) ( ) ( , )k y k y k    . 
N

Z  is 

mean the training data set. The minimizing solution 

implements the Levenberg-Marquardt (LM) algorithm, 

due to its rapid convergence properties and robustness. 

C. Optimal Brain Surgeon (OBS) 

Parsimonious structures for neural network can be 

obtained by the process of pruning, that including in 

deleting insignificant weights and nodes. Once the 

network is simplified, problems related to overfitting 

disappear. The basic of the procedure is to estimate the 

increase in the training error when deleting weights using 

information in the second-order derivates of the error 

surface is constructed to evaluate the effect of weight 

deletion. The change in the cost function, assuming was 

found. The local minimum is nearly quadratic, can be 

approximated by [14]-[16]: 

1 2 1 11
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The method was according to the saliency for weight 

“j” is defined by: 

1

2

T
P w H w                             (12) 

where w is the perturbation applied to the weight vector 

and H is the Hessian matrix. Lagrange multiplier can be 

used to solve the pruning problem: 

( )
T

j j
L P e w w                          (13) 

Then, the Lagrange value can be compute optimized 

with respect to w , subject to the constraint that the jth 
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where H
-1

 is the inverse of the Hessian matrix H, and 
1

[ ]
jj

H


is the jjth element of the inverse matrix. The basis 

of the OBS is the calculation of the saliencies, that 

represent the change in training error resulting from the 

deletion of wj. Based on the saliencies of its weights, 

connections into the net are eliminated and all all 

remaining weights are reestimated. The retraining is done 

with the Levenberg-Marquardt method keeping the 

punned weight equal to zero. 
 

D. Evaluation of the Performance of the Models 

The prediction results of the different models studied 

2
ˆ( )y y
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n


                         (15) 
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                       (16) 

where y, ŷ  and n are the value of target, output and 

number of observations, respectively. Clearly, the best 

score for R
2
 measure is 1 and for other measure is zero. 

III. REAULTS AND DISSUSION 

In these work, the identification process was presented 

by the widespread mathematical software package 

MATLAB, provided by the MathWorks Inc. [17] The 

steady output voltage of power source of PEMFC is an 
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weight is eliminated, called saliency . 

(RMSE) and absolute fraction of variance (R
2
) of 

prediction is define as:

are presented in terms of Root-Mean-Square Error 



important. PEMFC experimental data was recorded 

during various step load of current [18], [19]. The data set 

was then split in two sets, one for training and remaining 

for validation. The NNARX model lags are the 

represented as the number of recurrent and previous 

connection fed back to the input layer. As regressor 

structure selection is used two past inputs (nb) and two 

past outputs (na) in this work. The MLP consisted of 

three layers (input, hidden and output layer). The sigmoid 

activation function was used in the hidden layer and 

linear activation function was used in the output layer. 

The combination of layers and activation functions are 

able to approximate any continuous functions, provided 

that they have sufficient hidden units. Fig. 3 shows the 

un-pruning model validation result, where the measures 

data is compared to the predicted data. From the results 

plot, the model output (OSA, One-Step-Ahead) displays 

over-fitting and not good agreement with the measured 

output.  

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

0.9

1

time (samples)

Validation data test - Output (solid) and one-step ahead prediction (dashed)

0 10 20 30 40 50 60 70 80 90
-0.2

-0.1

0

0.1

0.2
Validation data test - Prediction error (y-yhat)

time (samples)  

Figure 3.  Unpruning validation model of NNARX 

To improve the generalization performance and over-

fitting drawback, the OBS to pruning the network 

structure by eliminating insignificant weights and bias. 

The results presented in Table I show that the best results 

were found in net structure 4 and have better performance 

than other structure. 

TABLE I.  PERFORMANCE COMPARISON BETWEEN THE VALIDATION 

AND PRUNING PROCEDURE 

Net 

structure 

Validation 

R2 

Pruning 

R2 

Validation 

RMSE 

Pruning 

RMSE 

3 0.951 0.903 0.0246 0.034 

4 0.951 0.966 0.0223 0.0204 

5 0.96 0.941 0.0223 0.0271 

 

Using the pruning procedure it was possible to reduce 

the number of connections in all cases without 

performance degradation, but no significant improvement 

in the results was obtained. The evolution of the RMSE 

and R
2
in the validation set and pruning procedure in the 

optimization of the net structure in 4 is shown in Fig. 4. 

The plot presented RMSE no little change until 17 

connections increase the error sharply. The smaller 

RMSE in the pruning model was found when just three 

connections were present and the final net architecture is 

shown in Fig. 5. 

0 5 10 15 20 25 30
0

0.04

0.08

0.12

0.16

0.2

x = training error,   + = RMSE,   o = validation error

Number connections  

Figure 4.  Evolution of RMSE between training and validation in the 
pruning procedure. 

1

2

3

4

Input layer Output layer Hidden layer 

 

Figure 5.   Pruning optimized net architecture in 4 of NNARX model.  

Fig. 6 shows the OBS validation results of the pruning 

NNARX model. From the residual plot, the model 

predicted is in good agreement with the measured output. 

The results about R
2
 and RMSE between unpruning 

validation and pruning validation are consistent with in 

Table I.  

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

0.9

1
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OBS Validation data test - Output (solid) and one-step ahead prediction (dashed)
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-0.1

0

0.1

0.2

0.3
OBS Validation data test - Prediction error (y-yhat)

time (samples)  

Figure 6.  OBS validation pruning model of NNARX 

IV. CONCLUSION 

In this paper, the new pruning approach based on 

Optimal Brain Surgeon (OBS) to determine the nonlinear 
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modeling structure of PEMFC is applied via Neural 

Network Auto-regressive model with eXogenous inputs 

(NNARX) has been proposed. The approach can be 

applied to determine redundant and insignificant network 

parameters. From the results of pruning procedure, the 

OBS algorithm can be efficiently and accurately indicate 

the optimal size and topology of net structure, and 

improve the performance of generalization and to avoid 

network over-fitting. In the future, some process of 

identification procedure or control scheme can be applied 

NNARX model based on OBS algorithm. 
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