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Abstract—In this paper, the optimal design of parallel-

connected UPS systems using particle swarm method-based 

hyperbolic sliding mode control strategy is developed. By 

the use of the Hyperbolic Sliding Mode Control (HSMC), 

the AC output voltage regulation and balanced current-

sharing among the parallel modules can be achieved. 

However, the chattering phenomenon still exists in HSMC 

and will cause heat losses and high voltage harmonics in 

UPS systems. To remarkably attenuate the chattering, a 

particle swarm method is used to optimally design the 

HSMC system. With the proposed strategy, the robustness 

of the UPS system is enhanced, and a high-quality UPS 

sinusoidal output voltage with low voltage harmonics and 

fast dynamic response can be obtained even under large 

parameter variations. Experiments are performed to testify 

the proposed strategy.  

 
Index Terms—Hyperbolic Sliding Mode Control (HSMC), 

chattering, particle swarm method, UPS system, voltage 

harmonics 

 

I. INTRODUCTION 

Due to the design ease in thermal management and the 

remarkable improvement in redundancy, modularity, and 

maintainability, the parallel-connected Uninterruptible 

Power Supply (UPS) system is popularly used in energy 

conversion systems, such as photovoltaic systems, wind 

energy systems, and fuel cell systems [1], [2]. The 

parallel-connected UPS system must provide high-quality 

AC output voltage with low Total Harmonic Distortion 

(THD), fast dynamic response, and zero steady-state 

errors; these requirements can be obtained by employing 

feedback control methods. To provide the operation of 

the parallel-connected UPS systems well, it is essential to 

employ a voltage control loop and a current control loop. 

The voltage control loop is designed to obtain the output 

voltage with the desired amplitude and frequency while 

the current control loop is designed to control the current-

sharing among the parallel modules. Generally, a 

Proportional Integral (PI) controller can be used for 

parallel-connected UPS system design. However, the 

performance of the parallel-connected UPS with the PI 
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controller is disappointing under rectified load conditions 

[3]-[5]. Advanced nonlinear control methods are thus 

adopted to ensure good performance of parallel-

connected UPS systems, such as deadbeat control, 

wavelet transform technique, repetitive control, and so on. 

However, these methods need complicated mathematical 

models or large computation time [6]-[8]. Many 

literatures have shown that Sliding Mode Control (SMC) 

is capable of making a control system robust with regards 

to plant parameter variations and external load 

disturbances [9]-[11]. The SMC have also been applied to 

the control of parallel-connected UPS systems. However, 

these SMC methods use linear sliding surface, and the 

system states converge to the origin in infinite time [12]-

[14]. For fast convergence rate, and high-accuracy 

tracking, a Hyperbolic Sliding Mode Control (HSMC) 

with nonlinear sliding surface can be used, thus achieving 

parallel-connected UPS output-voltage with low THD 

and fast dynamic response, and balanced current sharing 

[15], [16]. But, the HSMC still has chattering 

phenomenon, and may cause heat losses, excite 

unmodelled high-frequency and incur high voltage 

harmonics. To remarkably attenuate the chattering, the 

particle swarm method is adopted to tune HSMC’s 

control gains optimally [17]-[19]. Once the parallel-

connected UPS using this proposed strategy is established, 

its good performance compared to classic SMC can be 

obtained, such as low voltage harmonics, fast dynamic 

response, and remarkably lessened chattering. 

Experiments are provided to demonstrate the robust 

control performance of the proposed strategy. The 

beginning of this paper represents the dynamic modeling 

of the parallel-connected UPS. Secondly, particle swarm 

method-based HSMC strategy is derived, and applied for 

parallel-connected UPS systems. Experimental results are 

finally shown to validate the performance of the proposed 

strategy. 

II. DYNAMIC MODEL OF PARALLEL-CONNECTED UPS 

Fig. 1 and Fig. 2 show the parallel-connected static 

UPS and the equivalent circuit, respectively. According 

to Fig. 2, the dynamics of the system can be written as: 
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Figure 1.  Structure of parallel-connected UPS system. 
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Figure 2.  Equivalent circuit of parallel-connected UPS system. 

III. CONTROL DESIGN 

Letting the state error ve  be the difference between 

the output voltage and the reference voltage as: 

refov vve                                 (2) 

where ov  is the output voltage, and )sin( tVv mref   is 

the reference voltage. 

Then, define the state error ie  be the difference 

between the output current of each UPS module and the 

reference current. 

refLim iie
m
                              (3) 

where 
mLi  is the output current of each module, and refi  

is the reference current. 

Our objective is to well design the control law, 

hmemm uuu   so that output voltage regulation and 

balanced current-sharing among the modules can be 

obtained.  

For the purpose of digital realization, a hyperbolic 

sliding mode control with the tangent function is selected 

as: 

)())(tanh()(
1

)( kekkekki
C

k imivvcm
m

m     (4) 

where  vk , ik  and   are constants. 

From (4), one yields: 
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The equivalent control, emu  by the use of the 

invariance condition can be obtained as: 

0)()1()1( 


kkk mmuum
em

        (6) 

The existence of the switching mode can be expressed 

in the following and then the hyperbolic sliding control, 

hmu  is obtained. 

0)1()( 
 hmemm uuumm kk                 (7) 

Notice that even though the chattering in the (7) has 

been reduced, but the chattering still happens. Thus, to 

effectively attenuate the chattering, the particle swarm 

method expressed in (8) and (9) is employed to optimally 

tune the control gains of the HSMC. 

The (8) and (9) show the evolution models of a particle 

and then the speed and position of each particle can be 

updated when flying toward destination. 
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where 
0

c , 
1

c  and 
2

c  are variables, 
1
r  and 

2
r  are random 

numbers, 
i

V  indicates present flying speed, 
i

X  shows 

present position, 
pbest

i
X  is local best position, 

gbest

i
X  is 

global best position. The operation of the particle swarm 

method is described in the following. 
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Step 1: Defining the number of particles, and 

initializing their initial speeds and positions. 

Step 2: Calculate the fitness of each particle. 

Step 3: For each particle, comparing its fitness with its 

present best fitness. When the former is better than the 

later, its present best fitness and best position are updated 

by its fitness and present position, respectively. 

Step 4: For each particle, comparing its fitness with the 

global best fitness of the swarm. When the former is 

better than the later, the global best fitness and global best 

position are updated by the former and the best position 

of the being compared particle, respectively. 

Step 5: Updating the position and speed of each 

particle. 

Step 6: Doing step 2 to step 6 until terminal condition 

is finished. 

IV. EXPERIMENTAL RESULTS 

The system is tested for three UPS modules connected 

in parallel using the following parameters: 

1 2 3
220E E E V   , 

1 2 3
2L L L mH   , 

1
50C F , 

1 2 3
0.1r r r    , 12

L
R   , output voltage, vo=110 

Vrms, 60Hz. The dynamics of the UPS under phase-

controlled load is tested. Fig. 3 and Fig. 4 show the 

waveforms obtained using the proposed strategy and the 

classic SMC, respectively. Inspection of the waveforms 

displays that the output voltage of the classic sliding 

mode controlled UPS has not only unsatisfactory steady-

state response but also larger oscillation than that of the 

proposed controlled UPS. The values of L and C filter 

parameters are assumed in suffering from 10%~500% of 

nominal values while the UPS system is under 12Ω 

resistive loading. Fig. 5 and Fig. 6 reveal output-voltage 

waveforms of the UPS controlled by the proposed 

strategy and the classic SMC. Clearly, because the 

chattering is attenuated, the proposed strategy is very 

insensitive to large parameter variations than the classic 

SMC. The output-voltage %THD under phase-controlled 

load and LC parameter variations are given in Table I. 

 

Figure 3.  Output waveforms of parallel-connected UPS system under 
phase-controlled load with the proposed strategy (100V/div; 20A/div; 

5ms/div) 

 

Figure 4.  Output waveforms of parallel-connected UPS system under 
phase-controlled load with the classic SMC (100V/div; 20A/div; 

5ms/div) 

 

Figure 5.  Output waveforms of parallel-connected UPS system under 
LC parameter variations with the proposed strategy (100V/div; 5ms/div) 

 

Figure 6.  Output waveforms of parallel-connected UPS system under 
LC parameter variations with the classic SMC (100V/div; 5ms/div) 

TABLE I.  EXPERIMENTAL OUTPUT-VOLTAGE %THD UNDER PHASE-
CONTROLLED LOAD AND LC PARAMETER VARIATIONS 

 Proposed Strategy Classic SMC 

Loads 
Phase-

Controlled 

Load 

LC 

Variation 

Phase-
Controlled 

Load 

LC 

Variation 

%THD 1.07% 1.35% 8.92% 11.46% 

V. CONCLUSIONS 

By the use of the HSMC, the output regulation of the 

parallel-connected UPS and the current-sharing among 

the parallel modules, have been obtained. Also, the 

particle swarm method remarkably attenuates the 

chattering which is produced by HSMC. Experiments are 

given to verify good performance of the proposed 

strategy even under large parameter variations. 
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