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Abstract—Several publications have discussed the 

application of Ensemble Kalman Filter (EnKF) in history 

matching problems. The EnKF provides updated 

approximations based on the conditioned constraints to the 

historical data. In this paper we show how the EnKF is 

capable of forecasting/recovering the unpredictable trends 

of Electricity Grid Carbon Factor (EGCF). We adopt the 

EGCF scenario in the UK based on the available energy 

data provided by the Balancing Mechanism Reporting 

System (BMRS). We apply EnKF for forecasting the 

incomplete datasets in the UK EGCF in 2014. We present 

the ability of EnKF to recover the EGCF. 
 

Index Terms—history matching, recovery, ensemble 

Kalman filter 
 

I. INTRODUCTION 

The international energy system experiences increasing 

unpredictable changes in the demand and load on the 

infrastructures. Such limitations may cause network 

power system failures, with addition of conventional, 

more polluting power stations, which eventually increase 

the level of Greenhouse Gases (GHG) emissions, 

particularly the EGCF. High level of EGCF may indicate 

poor utilizations of the whole electrical grids. Hence, a 

good forecasting technique is required in order to provide 

the EGCF forecast. In this paper we propose EnKF in 

forecasting EGCF and reconstruction of its trends. The 

obtained estimations may provide carbon inventory for 

assessment of energy network upgrades. 

II. ELECTRICITY GRID CARBON FACTOR 

According to [1], carbon factors are reported in 

kilograms of carbon dioxide (CO2) equivalent per unit of 

energy (kWh). The EGCF refers to the average carbon 

factor across the energy grid according to fuel mix from 

different power plant generations (renewables and non-

renewables) [2], [3]. The UK EGCF was introduced and 

studied in [2].  
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III. ENSEMBLE KALMAN FILTER 

Based on the UK EGCF defined in [2], [3], the 

historical EGCF results have shown fluctuations 

corresponding to different seasons. The fluctuations are 

mainly due to the effect of fuel generation that is required 

to balance the energy demand among the consumers. This 

shows the need to forecast the uncertain trends of the 

EGCF (corresponding to energy generations) ahead with 

the intention of mitigating the risk of grid failures during 

the peak period, monitoring and maintaining the 

acceptable level of carbon emissions. The forecast may 

need to be performed when there are incomplete fuel data 

available. This requires the robust approaches in 

modelling and forecasting the EGCF. In order to address 

the problem with such limitations, EnKF [4] is adopted 

and demonstrated in forecasting or recovering the EGCF 

from the incomplete fuel data in 2014. EnKF has been 

also known to have the ability in real-time updating 

(propagation) and historical matching of an ensemble in a 

model that matches the given production or historical 

data [1], [2], [4], [5]. 

IV. METHODOLOGY 

A. Estimations of Electricity Grid Carbon Factor 

The EGCF resulting from the variations of fuel mix 

during energy generation is defined in [2], [3]: 
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where m is the fuel type index (renewables and non-

renewables), Nm is the total number of fuels, Cm is the 

carbon factor for fuel type m, t is the time index, Em is the 

generated energy corresponding to fuel type m. 

The UK fuel-mix generation data is available publicly 

in [6]. However, the 2014 Quarter 4 (Q4) fuel-mix data is 

not yet available in [6]. This has impeded the electrical 

grid experts from evaluating the trend of the 2014 Q4 
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season that allows pre-cautionary actions to be taken 

beforehand. Therefore, EnKF is applied in forecasting (or 

recovering) the missing 2014 Q4 fuel data to determine 

the EGCF.  

B. Covariance and Correlation Coefficient 

Before we apply EnKF, it is necessary to determine the 

relationship of two global variables (the available 

historical and 2014 EGCF datasets from [2], [6]). Such 

determination is important as strong correlation between 

two variables will enable us to determine initializations 

(the prior knowledge) later before simulating the EnKF 

model.  

We measure the covariance in order to determine the 

possible relationship between the two variables. The 

covariance COV is calculated using: 
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where x and y refer to the variables (historical and 2014 

EGCF datasets, together with their sample means), i 

indexes the sample, and n is the total number of samples. 

We further compute the correlation coefficient using 

the following equation: 
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C. EnKF Algorithm 

In EnKF, the variables of interests (fuel energy 

generation) are collected into state vector y: 

m
y

d

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                                 (4) 

The m is the dynamic or static variables (fuel data) and 

d represents the observation variable (EGCF). The state 

vector y is determined based on the initial conditions (the 

prior knowledge of the model or historical records of 

earlier observations of the data). In this paper, the prior 

observation EGCF data (d) is obtained by using (1). The 

computation of (1) is based on the available fuel mix data 

(m) published in [6]. 

We perturb m and d with the model errors - the 

randomized Gaussian process noise Q with zero mean 

and covariance W for m and similarly, the Gaussian 

measurement noise R with zero mean and covariance V 

for d. Values Q and R are assumed to be drawn from 

Gaussian distributions with Q~N(0,W) and R~N(0,V). 

Model errors are very important as without model errors 

the whole system may be over specified and therefore no 

solutions resulting from EnKF propagations are obtained 

[7]. 

We create the ensemble of state vectors denoted as 

matrix Y in EnKF: 

1 2
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where Ne is the total number of ensembles. The ensemble 

y
p
 (a priori ensemble) from the observations will be 

propagated using EnKF to obtain the newly updated 

ensemble y
u
 (a posteriori ensemble) [2]: 
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where j indexes the ensemble members, Cy is the 

covariance matrix of state vector y, H is the measurement 

operator relating to the model variables, R is the 

covariance matrix of the measurement noise, and dobs is 

the perturbed observations from (4).  

We commit to determine the forecasting errors 

resulting of EnKF by applying the Root Mean Square 

Error (RMSE). RMSE in this paper is calculated as the 

differences between the average forecasted (E[d
u
]) and 

the EnKF mean observations (Е[dobs]): 
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where n is the total number of samples. 

V. RESULTS 

A. Estimation of Electricity Grid Carbon Factor 

We substitute the earlier results of estimated carbon 

factors from [1] into Cm in (1). The latter includes the 

samples of historical fuel data courtesy of Balancing 

Mechanism Reporting System (BMRS) [6] in tabulating 

the daily mean of EGCF. Fig. 1 illustrates the daily data 

of EGCF in 2014 (incomplete).  

 

Figure 1.  The incomplete 2014 EGCF dataset. 

In Fig. 1, it is noted that the 2014 EGCF is only valid 

up to 273
th

 day. Hence, we intend to forecast (or recover) 

the EGCF in the remaining Q4. Before we apply the 

EnKF forecast for 2014 Q4, we  (2)  and (3)  to find the 

correlation  between the two datasets.  

B. Estimation of Covariance and Correlation 

Coefficient 

Table I shows the calculated covariance COV and 

correlation coefficient. The COV and the correlation 

coefficient of 0.5789 have confirmed a good correlation 

between the available 2014 datasets with the historical 

data from [6]. Hence, EnKF can be performed to forecast 

International Journal of Electrical Energy, Vol. 3, No. 4, December 2015

©2015 International Journal of Electrical Energy 210

where x and y are the variables (historical and 2014 

EGCF datasets), 𝜎𝑥 and 𝜎𝑦 refer to the standard 

deviations of the variable x and y, respectively.

use 



 

 

the EGCF in the remaining period of 2014. The historical 

EGCF data is later selected as the initial conditions (prior 

data) for initialling simulation for the EnKF model. 

TABLE I.  COVARIANCE AND CORRELATION COEFFICIENT 

Covariance 0.0013 

Correlation coefficient 0.5789 

C. EnKF Propagation 

Using the available historical EGCF data, we created 

ensembles of true measurements (the observations), 

taking the mean of the observations simulated at every 

time step. At the same time, we examine the model state 

(4) propagated at every time steps. An initial ensemble (a 

priori ensemble) at every realisation of the model state is 

created that forms the ensemble Y in (5). The a priori 

ensemble member is updated to form a posteriori 

ensemble member in (6), which represents the simulated 

observations. The tabulated a posteriori ensembles are 

finally computed as the E[y
u
], to be comparable with 

Е[dobs]. This allows us to compare the convergence in 

relation to the observations. 1000 ensemble members are 

created in this example. The plot with datasets of 

observations and EnKF mean propagation of EGCF is 

shown in Fig. 2. The figure shows that the EnKF mean 

estimations converge towards the observations of the 

EGCF data.  

 

Figure 2.  Plot of ensemble mean distributions of 2014 Q4 EGCF vs. the 
observations. 

The RMSE values from Table II indicate that the larger 

the ensemble size, the smaller the RMSE value, and the 

better EnKF mean estimations converge towards the 

observations of EGCF data.  

TABLE II.  RMSE 

Number of ensemble Ne RMSE 

10 0.0757 

50 0.0359 

100 0.0290 

500 0.0224 

1000 0.0209 

 

We then map the EnKF forecasted results into the 2014 

Q4 EGCF data and the resultant plot is shown in Fig. 3. 

 

Figure 3.  Plot of forecasted 2014 EGCF data. 

VI. CONCLUSIONS 

This paper presents the application of EnKF in 

modelling EGCF in the UK. The covariance and 

correlation coefficient are calculated based on the partly 

available 2014 EGCF data and the historical EGCF data. 

A good correlation between the historical and 2014 

EGCF confirms that EnKF can be performed in 

forecasting the EGCF in the remaining period of 2014 Q4. 

The historical EGCF data has been selected as the priori 

data for initialization in the simulation of the EnKF 

model. 

EnKF is capable of forecasting and recovering the 

EGCF from the incomplete fuel data. The ability of EnKF 

to match the forecast data with observations (historical 

data) demonstrates the strength of EnKF in estimations of 

the system state and this can be achieved under the 

condition that the ensemble size must be sufficiently 

large. 

Although the forecasting or recovering of EGCF using 

EnKF has been demonstrated in a relatively simple model, 

the EnKF can be applied in highly nonlinear systems, for 

instance, in estimation or recovery of individual fuel 

mixes that balance the electricity market. The EnKF 

modelling will however become complex and require 

identifying state variables, initial conditions and prior 

knowledge in the EnKF model. We suggest that the 

recovery of EGCF should be taken into account in all 

aspects of the fuel generations, transmissions and 

distributions.  
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