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Abstract—This paper addresses the problem of predicting 

the average wind speed at different prediction horizons 

ranging from 6-hours to 1-day based on wind velocity 

recorded at a point. The problem is relevant in several 

application fields and recently appears of particular interest 

for operators of electrical wind turbine plants and/or for 

optimisation of conventional power plants. Exogenous 

inputs are not taken into account in this preliminary work, 

so that the problem is set as pure time series identification 

and carried out by considering NAR (Non-linear Auto 

Regressive) models. Therefore model performance are solely 

related to the degree of autocorrelation of the considered 

time series and to some extent on the kind of non-linear 

approximation basis function taken into account. Different 

data set were considered for training and validation 

purposes in order to assess the model generalization 

capabilities. The role of model order was evaluated on the 

space of representative performance indices. Results show 

that while the forecasting performances are remarkable for 

the 6 and 12 hours prediction horizons, they look no so good 

for the 1-day prediction horizon. Work is still in progress in 

order to overcome these shortcomings. 

 

Index Terms—wind speed, time series, NARX models, 

sigmoid networks, smart grids 

 

I. INTRODUCTION 

Wind energy has always provided the driving force for 

several human activities. The use of this kind of energy 

has subsequently fallen into disuse with the deployment 

of electrical energy from fossil fuels. However, the recent 

attention paid to climate changes, promoted a renewed 

interest for the production of electrical energy from 

renewable sources and therefore also from wind. This 

type of energy, in comparison to other renewable energies, 

requires lower investment and generally is largely 

available almost everywhere. Unfortunately wind power 

is affected by strong uncertainty. Indeed the strength and 

direction of wind changes on a scale of days, hours, or 

even minutes, depending on weather conditions. 

Furthermore nowadays wind turbine for generation of 

electricity can be very large (even hundred of MW) and 

are connected to the so-called smart grids, i.e. complex 

power interconnected systems were power can be more 

efficiently generated, transmitted and consumed. This 

implies for the wind turbine operators the need to forecast 

                                                           

Manuscript received August 20, 2013; revised November 12, 2013. 

the performances of their plants as accurately as possible 

in order to avoid destabilization of the overall grid. 

Furthermore in case the operators are not able to deliver 

their traded amount of energy are subjected to pay fines.  

Bearing in mind that the power output in a wind 

turbine depends on the cube of wind velocity, it is easy to 

understand that the challenges of accurately predicting 

the power output in a wind turbine are strongly dependent 

on the ability to identify reliable models for the wind 

speed stochastic process. 

The topic of predicting wind power has been widely 

addressed in literature. A review on 30 years of history of 

the wind power short-term prediction was given in [1] 

while a more recent and comprehensive review was given 

in [2] as a deliverable of the ANEMOS. plus European 

Project. In this latter contribution wind models are 

classified into two broad classes depending on the fact 

that a Numerical Weather Prediction model (NWP) is 

involved or not. Usually models that include NWP are 

referred to as physical models, while models of the latter 

class are referred to as statistical or time series approach. 

The choice of involving a NWP model or not depends 

on the forecast horizon. Models that make use of NWP 

are considered for long time horizon while time series 

approach are considered for short time horizon (less the 

24 hours). This latter kind of models can be very useful 

for optimisation of conventional power plants, where 

reasonable prediction horizons can vary between 3 to 10 

hours depending on the size of the system and the type of 

conventional units included. In order to clarify this aspect 

it could be useful to consider, as an example, that for 

systems including only fast conventional units, such as 

diesel gensets or gas turbines, the horizon can be below 3 

hours [2]. Another aspect that characterizes the two 

classes of models is the space scale. Usually physical 

models are considered for large space scale prediction 

while time series approaches are more appropriate for 

prediction at a point. Indeed physical models, when 

considered for point wise prediction involve a quite 

complex process of statistical downscaling [3].  

Since a discussion about the features of the two 

described model classes is beyond the scope of this paper, 

here a new NAR time series modelling approach, based 

on the use of sigmoid functions will be presented. 
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II. WIND SPEED DATA ANALYSYS 

Wind speed time-series is a random process with a 

marked seasonal component as shown for instance in Fig. 

1.  

 

Figure 1.  Daily average wind speed time series recorded at 
Caselle (Turin, Italy) from January 2004 to December 2012. 

The spectrum of a the daily mean data set shown in Fig. 

1 is reported in Fig. 2, where it is possible to recognize a 

peak with a period of 1 year.  

 

Figure 2.  Spectrum of the daily wind speed time series. Frequency 

in abscissa is expressed in (day)-1. 

At a lower time scale, for instance in the order of 1 

hour, wind speed exhibits a typical scattered behavior, as 

shown in the sample data given in Fig. 3. 

 

Figure 3.  A record of hourly average wind speed.  

The mean and variance of the considered data set 

during the 4 seasons are reported in Table I. 

TABLE I.  MEAN AND VARIANCE OF WIND VELOCITY OF THE 

CONSIDERED DATA SET  

Season Mean (m/s) Variance (m/s) 

Winter 2.4938 1.0517 

Spring 2.9776 0.6113 

Summer 2.7918 0.4628 

Autumn 2.1575 1.0517 

 

As it possible to see the mean of the daily mean values 

are higher during spring and summer season while, on the 

contrary, the variance is lower. In any case, the variability 

of the mean and variance of the time series with seasons 

indicates a non-stationary feature. 

In order to get some a-priori insights about the possible 

success of linear models to predict wind velocity, it is 

possible to consider the autocorrelation function. As an 

example, for the daily mean wind time series represented 

in Fig. 1, the autocorrelation function is shown in Fig. 4. 
 

 

Figure 4.  Autocorrelation of daily mean speed time series. 

Form Fig. 4 it appears that the autocorrelation decays 

rapidly as early as the first lag values, thus confirming 

that the daily mean wind time series is very scattered. 

Moreover, since the higher autocorrelation coefficient (at 

lag 1) is about 0.42 even the possibility to correctly 

predict the mean value for the day after (i. e. 1 day ahead) 

appears to have a limited chance of success by using 

simple linear autoregressive models. 

For hourly mean wind speed, such that shown in Fig. 3, 

the autocorrelation function is shown in Fig. 5. 
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Figure 5.  Autocorrelation of hourly mean speed time series. 

From Fig. 5 it appears that autocorrelation takes about 

10 lags to decay to values lower than 0.5 and thus the 

prediction problem without using exogenous inputs 

seems realistic in the horizon of hours even using linear 

models. 

III. WIND SPEED TIME SERIES MODELING 

APPROACHES 

Several methods have been proposed in literature for 

modelling wind speed time series. The most studied 

approaches are autoregressive moving average (ARMA) 

[4], autoregressive integrated moving average (ARIMA) 

[5], fractional ARIMA (fARIMA) [6], hybrid ARIMA [7-

8]. Since, as mentioned in the previous section, linear 

models may have limited chance of success for modelling 

wind time series, we explore in this paper the possibility 

to use NAR (Non-linear Autoregressive) models. The 

rationale for this is that random inputs are not the only 

source of irregular behaviours of the system output. 

Indeed nonlinearities or chaos can produce very irregular 

data even with purely deterministic equation. So it is 

better try to explain irregularities in a given time series to 

both the presence of random inputs and nonlinearities [9]. 

The literature about non-linear modelling techniques of 

wind speed time series is very rich. For instance, various 

Data-Mining approaches, such as the Cluster Center 

Fuzzy Logic (CCFL), Multi Layer Perceptron (MLP) 

neural networks, k-nearest neighbour model (k-NN) and 

Adaptive Neuro-Fuzzy Inference (ANFIS) have been 

considered in [10]. Others non linear approaches have 

been presented in [11]. A quite general way to express a 

non linear model is the so-called NARX form, as shown 

in expression (2): 

 ( )   ( (   )    (    )  (    )    (  

     ))                                               (1) 

Here F(x) is an unknown non-linear function of the 

vector argument x, y(t) is the scalar system output, u(t) 

the related input variable (e.g. meteorological). Of course 

the input variable can be more than one and in this case 

expression (1) must be according modified. When 

exogenous inputs u is not available, expression (2) 

becomes a NAR model. Several of the most powerful 

time series modern techniques such as the MLP artificial 

neural networks, the Fuzzy and the Neuro-Fuzzy 

techniques can be considered for approximating the 

unknown function F given an appropriate set of measured 

data. In this paper we have referred to the nlarx procedure, 

available in the MATLAB
©
 Identification Toolbox [12], 

where several non linear estimation options are available 

such as wavelet based functions, sigmoid function etc. 

However it is not the aim of this paper to propose a 

comparison among these kinds of estimators. How we 

will discuss in the next section, by a trial and error 

approach we have found that for the considered 

application, good results can be obtained by using the 

sigmoid function. This means that the F function is 

expanded as a series of terms of the basic function 

expressed in (2) 

 ( )  
 

(     )
                           (2) 

IV. PERFORMANCE INDICES 

In order to objectively evaluate the goodness of a 

prediction model several performance indices can be 

taken into account. Such indices can be roughly grouped 

into two separate sets: a) global fit indices, i.e. those 

indices that give measures of the fit of the overall time 

series (i.e. for instance the RMSE error), and b) those that 

give a measure of the capability of a given model to 

predict critical episodes (i.e. for instance the SP index), 

referred to here as exceedance indices. 

A. Global Fit Indices 

The definition for the most common global indices is 

given below. Let us indicate as O and P the observed and 

predicted time series than we have the following 

definition. 

The mean bias error, expressed by (3) is the degree of 

correspondence between the mean forecast and the mean 

observation. Lower absolute numbers are best. Values < 0 

indicate under forecasting. 

              
  

 
∑ (      )
 
               (3) 

The Mean Absolute Error (MAE) expressed by (4) is 

the mean of the absolute value of the residuals from a 

fitted model. Lower numbers are best. 

         
  

 
∑ |     |
 
                         (4) 

The Root Mean Square Error (RMSE) expressed by (5) 

is considered to aggregate the magnitudes of the errors in 

predictions for various times into a single measure of 

predictive power. It is a good measure of accuracy, but 

only to compare forecasting errors of different models for 

a particular variable and not between variables, as it is 

scale-dependent. 

        √
  

 
∑ (     )

  
                (5) 
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B. Exceedance Indices 

The target of predicting the exact value of the mean 

wind velocity model, even if in principle useful, is not 

realistic, due to wind stochastic nature. Thus it seems 

more realistic to assess the goodness of a prediction 

model evaluating its capability to forecast if the mean 

wind velocity will exceed a given threshold. On the other 

hand, the practical problem of wind turbine plant operator 

is not to predict the exact value of energy that the plant 

will be able to produce, but to know if the plant will 

produce at least a certain amount of energy. Bearing this 

in mind, we have borrowed a set of performance indices 

originally adopted by the European Environment Agency 

[13] to test the capabilities of a short term forecast model 

to predict exceedance of photochemical smog. These 

indices are defined according with the following standard 

contingency table (see Table II): 

TABLE II.  CONTINGENCY TABLE 

Alarms Observed  

Forecasted Yes No Total 

Yes a f-a F 

No m-a N+a-m-f N-f 

Total m N-m N 

where: 

N  is the total number of data points; 

f    is the total number of forecast exceedance 

m  is the total number of observed exceedance; 

a  is the number of correctly forecast exceedance. 
 

Using these definitions, the following indices can be 

defined: 

SP (the probability of detection) is the fraction of 

correct forecast critical events. Its values ranges from 0 to 

100, 100 being the best value. 

   
 

 
                                (6) 

SR (the percentage of predicted exceedances actually 

occurred) is the fraction of realized forecast critical 

events (range from 0 to 100 with a best value of 100). 

   
 

 
                                 (7) 

FA (the false alarm rate) express the percentage of 

instances when predicted exceedances did not actually 

occur. With respect to a good model FA should approach 

zero. 

                                   (8) 

V. RESULTS 

The data set considered in this paper is represented by 

mean values of wind velocity measured at Caselle (Turin, 

Italy) from January 2004 to December 2012. Data were 

measured with 1 hour sample time at 10 m height from 

ground level and have been reported at the turbine hub 

height, by using a model of the type represented by 

expression (9), as suggested by [14]. 

      (
 

  
)
 

                          (9) 

In expression (9) Uz represents the wind speed at height 

z, z is the height from ground level, U10 the wind speed 

measured at 10 m from ground and p a coefficient 

depending from terrain conditions. For rural terrain p is 

assumed to be about 0.16 [14]. 

Three different classes of NAR models have been 

identified depending on the prediction horizon considered. 

Models were trained on a set consisting of about 80% of 

available data and validated on the remaining 20%, in 

order to assess the generalization capabilities. The role of 

model order is evaluated on the space of representative 

performance indices. Appropriate software was coded in 

MATLAB to this purpose. 

A. Results for 6-Hours Ahead Prediction Models 

Mean errors, MAE and RMSE computed for 6-hours 

prediction models with order ranging from 1 to 20 are 

shown in Fig. 6. 

 

Figure 6.  Mean error, MAE and RMSE (horizon=6 hours). 

As it is possible to see, global errors are quite 

independent of the model order. In particular the mean 

error is < 0 indicating that the considered approach tends 

to under forecast. The SP and FA exceedance indices 

computed for order models ranging from 1 to 20 is shown 

in Fig. 7. 

 

Figure 7.  SP and FA for orders ranging from 1 to 20. 
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Fig. 7 shows that the percentage of events exceeding 

the threshold of 8 m/s correctly forecast, with a time 

horizon of 6 hours, is of about 80% while the number of 

false alarms is of about 30%. Furthermore it seems that 

low order models (say 6 - 7) perform better. A detail in 

terms of M, F and A is given in the following Fig. 8. 

 

Figure 8.  M, F and A for orders ranging from 1 to 20. 

The horizontal line represents the level M of 

exceedances observed in the testing time series. Fig. 8 

shows that models tend to forecast a number F of 

exceedances higher than those actually observed (M), 

while, of course, the number of exceedances correctly 

forecast A is lower than M. Furthermore it seems that 

high order models produce a scattered behavior in terms 

of F and A thus meaning that they are less stable in terms 

of prediction accuracy. 

The time behavior of the 6-hours prediction model 

with order equal to 20 for the validation set is reported in 

Fig. 9.  

 

Figure 9.  Time behavior of the 6 hour prediction model (validation 

set). 

The black and blue lines correspond to model output 

and measured data respectively. 

B. Results for 12-Hours Ahead Prediction Models 

Mean errors, MAE and RMSE computed for 12-hours 

prediction models for a range of NAR model order 

ranging from 1 to 20, are shown in Fig. 10. 

 

Figure 10.  Mean error, MAE and rmse of NAR models of orders 
ranging from 1 to 20, for prediction horizon equals to 12 hours. 

While performances in terms of exceedance indices are 

reported in Fig. 11.  

It can be seen that the performance of 12-hours 

prediction model are lower that the corresponding 6-

hours models, both in terms of global and exceedance 

indices, but still considered acceptable. Indeed even the 

number of FA may reach high values (even 60%), for 

appropriate model orders they can be holding lower than 

30%. 

 

Figure 11.  SP and FA for orders ranging from 1 to 20. 

A detail of exceedances performances is given in the 

following Fig. 12, where the number of episodes in terms 

of M, F, and A exceeding the threshold of 8 m/s 

contained in the evaluation set are shown. 

 

Figure 12.  M, F and A for orders ranging from 1 to 20. 
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The time behavior of the 12-hours prediction model 

with order equal to 20 versus the validation set is reported 

in Fig. 13. 

 

Figure 13.  Time behavior of the 6 hour prediction model (validation 
set). 

C. Results for 1-Day Ahead Prediction Models 

For 1-day ahead prediction models the time series of 

daily mean wind velocity were considered. Thus models 

were identified as being 1-step prediction. As usually, the 

data set was divided in two parts, reserving the first 80% 

for the model training and the remaining 20% for the 

validation. Global errors indices obtained are shown in 

the following Fig. 14. 

 

Figure 14.  Mean error, MAE and rmse of NAR models of orders 

ranging from 1 to 20, horizon = 1-day. 

Exceedance indices for a threshold of 3 m/s are shown 

in Fig. 15. 

 

Figure 15.  SP and FA for orders ranging from 1 to 20. 

 

Figure 16.  M, F and A for model orders ranging from 1 to 20. 

Finally a detail in terms of T, F and A concerning the 

exceedance episodes contained in the validation data set 

is reported in Fig. 16. As can be seen for all identifies 

models the SP value is in average of about 30% while the 

FA, i.e. the number of false alarms is higher than 55%. Of 

course such performances are non useful for application 

purposes.  

The time behavior of the 1-day prediction model with 

order equal to 20 versus the validation set is reported in 

Fig. 17. It is possible to appreciate that while the model is 

capable to fit the general trend of measured data it is not 

capable to predict the peak values of the daily mean wind 

velocity. 

 

Figure 17.  Time behavior of the 1-day prediction model (validation set). 

VI. CONCLUSIONS 

In this paper a new NAR time series modelling 

approach, based on the use of sigmoid functions has been 

presented. Results show that the identified models 

perform quite well to forecast wind speed velocity at a 

point for the 6 and 12 hours prediction horizons. 

Therefore, they can be reliably used for applications such 

as optimization of conventional power plants, where 

reasonable prediction horizons usually vary between 3 to 

10 hours, depending on the size of the system and the 

type of conventional units included. Unfortunately results 

are not so good for the 1-day horizon. However, it is to be 

stressed here that in this preliminary work exogenous 

inputs were not deliberately taken into account. Work is 
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still in progress in order to evaluate new opportunities of 

success by using appropriate exogenous inputs such as 

other meteorological variables and redundancies of 

spatial distribution of recording stations.  
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