
Proposals for a Revision of Kerberos When Run

in Conjunction with the IPsec Protocol Suit

Dean Rogers
Berlin, Germany

dean@rogers.com.de

Abstract—IPsec is an end to end secure communication

protocol operating in the IP layer of the communications

stack. It secures bilateral communication interchanges

between hosts by encrypting individual IP packets.

Kerberos provides a means of authenticating abstract

entities to each other by via a trusted third party. It does

this by encrypting packages, or tickets, of information using

keys, which have been retained from previous exchanges.

This investigation considers how Kerberos’ internal message

structures may be adapted when run in an IPsec

environment, possibly avoiding layered encryptions, and

encryptions whose purpose is to certify identity.

Index Terms—authentication, Kerberos, encryption, IPsec

I. INTRODUCTION

The purpose of authentication is to establish a trust

relationship between two parties, mostly for the exchange

of confidential data. How one entity can successfully

verify its identity to another for this purpose is a problem,

which is difficult to solve with 100% reliability. In

general, authentication involves proof of identity, by

verifying at least one form of identification. This may be

by trusted third party guarantee, direct measurement and

comparison of a characteristic of the applicant to known

values of who the applicant claims to be, or possession of

Identity documentation which only the true applicant

should possess. The three factors of authentication are

evidence of something the applicant knows (such as a

password), possession (like a Passport), or a physically

unique characteristic (for example a fingerprint). How

this problem is approached in the field of computer

science remains a volatile subject.

At the everyday level, concern grows over the security

of online payments for books, DVDs, music, flight tickets,

and online banking etc. If credit card numbers could be

easily intercepted during transmission, the potential for

misuse would be immense. The need to secure electronic

communications, and means of remote parties to achieve

this secularly, is apparent to anyone involved in any kind

of electronic communication today.

Network access to a computer requires authentication,

requisite communications are mostly facilitated by the

TCP/IP stack, and the methods of achieving security are

naturally interrelated with this protocol. Facilitating the

Manuscript received May 30, 2013; revised September 13, 2013.

privacy of electronic communication IPsec was

developed to provide encryption and integrity for

messages (IP packets). Optionally it can also provide, in

the sense that it can require, authentication services.

In distributed environments with multiple services

available, and mobility of users between client machines,

Kerberos provides a centralised authentication system for

user and service. Mutual authentication is necessary to

prevent compromise of data and or communications

between users and/or services by rogue hosts (clients or

services) being introduced into a network.

II. PRIOR KNOWLEDGE

Prior knowledge of subjects such as encryption

algorithms, hash functions, and Internet Key Exchange,

IKE [1], is assumed so that the paper may proceed at an

appreciable pace. The interested reader is directed to

suitable material [2].

III. PROBLEM STATEMENT

It can be observed that where the encryption systems

integral to Kerberos were to be implemented over

communication channels protected by encryption

algorithms such as those provided by IPsec there appears

to be a duplication of effort; where IPsec at the IP layer

would further encrypt those Kerberos encrypted tickets

passed to it; which would clearly be computationally

wasteful. This could mean that in these circumstances

some of the encryption built into Kerberos may be

superfluous, and investigation may reveal that alternative

message passing procedures between the entities could be

more appropriate than seen in the present Kerberos

implementation.

Those already familiar with Kerberos V5 internals may

proceed directly to Section IX.

IV. PRELUDE

Computer security involves three objectives,

 Authenticity, or how one can prove to a

conversation partner that one is who one claims to

be, and conversely how can one verify the other

parties identity

 Confidentiality, how can one ensure that only ones

conversation partner can read a message when it is

desired that its content not be revealed to third

parties

228

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing
doi: 10.12720/ijoee.1.4.228-233

 Integrity, ensuring that messages are received

intact in their original condition and have not been

modified or otherwise tampered with during

transit.

V. KERBEROS

Users are required to identify themselves by name, ID,

and password to prove who they are, in other words

authentication is performed before the use of network

resources is permitted. Because of the risk impersonation

this password should not fall into the wrong hands, here

the excuse ‘it was not me’ would be invalid. The role of

Kerberos is to protect network resources from

unapproved access.

VI. A LITTLE HISTORY

The Kerberos concept was instigated as project Athena

at Massachusetts Institute of Technology, MIT, in 1983.

And was summarised in 1988 [3]. The intention was to

integrate the University’s Digital Equipment Corporation,

DEC, minicomputers running Berkley 4.2 Unix into a

unified network. At that time, each minicomputer

supported several dumb terminals used by students.

Networking the DEC’s would enable full access to their

files for students from any computer or terminal on

campus. An early paper analysing the topic was published

in 1990 [4].

It was developed to authenticate users logging into a

workstation running appropriate client software. The

system issued users with an encrypted ‘ticket’ by the

Kerberos server. This ticket could only be decrypted with

the users’ password, and contained information for

obtaining further tickets, which were necessary for

accessing network services, each requiring a ticket.

The specification for V5 was formalised in 1994 [5],

and updated in 2005 [6]. The legacy of Kerberos’s

original design brief that it needed to secure

authentication messages across an insecure network is

still evident in its architecture today.

VII. KERBEROS INFRASTRUCTURE

A certain amount of prior setup is required for a

Kerberos system to function as intended. An

Authentication Service, AS, provides authentication of

users and clients for the realm, sometimes also known as

a domain. A realm constitutes the boundary of connected

clients and services for which the Kerberos system is

authoritative. To facilitate this, the AS maintains a

database, DB, of User IDs, Host IDs, collectively known

as principals, and their associated passwords or secret-

keys, which, for security reasons are stored as hash

functions. The AS holds a copy of the TGS (cf) secret key,

and those of all clients of the realm. The ticket it issues is

called a Ticket Granting Ticket, TGT.

The Ticket Granting Service, TGS, is a service that

checks client requests submitted to it have been validated

by the AS, and returns to the client a ticket of authority to

be used to validate itself with the requested SS (cf). The

TGS holds its own secret-key, which it copies to the AS,

and holds copies of secret-keys for each SS in its realm.

The Server Service, SS, is a service selected by A from

possibly many requested by the User: though not

exclusively, services can request service of each other.

This service has its own secret key (SS secret-key) which

it copies to the TGS.

The User/client, A, is the User we refer to as the

person wishing to make use of networked resources,

which are protected from unapproved usage by the

implemented authentication protocol. Client software has

to be in place to recognise the protocol being used in the

realm to which they are attempting to connect; otherwise

authentication cannot succeed.

VIII. KERBEROS V5 MESSAGE INTERCHANGE

Step One, the User logs into Client A with their ID and

password. The client software then hashes the password,

and sends a message to the AS including the clients ID,

the ID of the TGS, and a request for timestamp settings,

Fig. 1 Note the novel use of colour coding indicating the

elements of message exchanges to illustrate the

relationship of those elements to each other, during their

passage through the message exchange process.

A  AS: A+RA+TGS+N1+Tf

Here: the ‘+’ sign indicates concatenation.

RA this is the Realm of the client
N is a nonce

Tf are client options that can be requested, from(start)

till(expiration or time-to-live) rtime(renew till time request)

Figure 1. Client to authentication server.

The clients’ ID is fundamental to the authentication

process, its verification is essential; the Timestamp

establishes that the message is not a replay of an earlier

one. The ID of TGS is the indication to the AS that the

client requests authentication (since there should only be

one TGS within the realm, the AS should already know

this.) The client can determine the ID-TGS by various

means outside this discussion, for example it could be

included in DNS information. Note that at this stage the

SS-ID is not indicated.

Step Two, The AS looks up the User ID in its database,

and if found, it then checks that the password hash stored

matches the one sent to it. The user has authenticated to

this stage of the procedure upon success; which does not

yet allowed the use of network resources. To enable this,

the AS returns a message to the client for further

processing, Fig. 2.

The message passed back to the client contains two

sets of encrypted data; one is a ticket for presentation to

the TGS (it includes additional flags not relevant here:

229

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

omitted for simplicity), the other is session information

validating the communication between client and TGS.

AS  A: A+RA+KTGS(KATGS+RA+A+IPA+Tf)+

KA(KATGS+RTGS+TGS+N1+Tf)

Here: KTGS is the encryption key of TGS RTGS is the realm of TGS

 KATGS is a session key for A and TGS use
IPA is the IP address of A in any format consistent with the

realm
KA is the clients’ encryption key as previously discussed

Figure 2. Authentication server returns tickets to client.

Colour coding: green section denotes Ticket Granting Ticket; the orange
shading denotes session information.

The TGT is a remit from the AS to the TGS to issue a

ticket to A for granting access to an SS. It includes

duration stipulation, IP address, realm identifier, ID of

client, and a unique session key denoting the

communication between A and TGS; all encrypted with

the TGS key (in practice a hash of a value provided by

the realm administrator). Facilitating single-sign-on the

TGT is reusable by specifying different SS-IDs.

Session information includes the session key (large

random number, generated by the relevant host), duration

stipulation, realm and ID of the TGS (which should

match the realm of A), and a nonce value (if this value is

seen again the ticket will be discarded); all encrypted

with the hash of the clients password.

Step Three: Using its own key, the client can decrypt

and retrieve the contents of the session information, and

data for connecting to the TGS. The TGT is stored for

forwarding, Fig. 3.

ATGS: SS+Tf+N2+KTGS(KATGS+RA+A+IPA+Tf)+

KATGS(A+RA+TS1)

Here: N2 is a second nonce in the protocol message exchange

 TS1 is a timestamp

Figure 3. Client requests a ticket granting ticket.

The client is now ready to make a request to the TGS

for access to the SS. It is of no concern how A, in

complex networks, determines the ID of the relevant SS

from possibly hundreds, whether the User selects it from

a list, it is pre-configured in a profile, or via DNS. The

request is made by sending a message consisting of the

session duration, SS-ID, a new nonce, the ticket granting

ticket saved from earlier, and an ‘authenticator,’

certifying the clients identity (note: this effectively means

the client is certifying its own ID, but only they could do

this). The authenticator consists of client-ID, and clients’

realm, together with a time-stamp; all encrypted using the

client-TGS session key recovered from the session

information that the AS had encrypted with the clients

key, which it holds in its DB.

Step Four: the TGS can now issue a ticket, which the

client can present to the SS verifying to the SS’s

satisfaction that the client has been authenticated, Fig. 4.

TGSA: A+RA+KSS(KASS+RA+A+IPA+Tf)+

KATGS(KASS+Tf+N2+RSS+SS)

Here: KSS is the SS secret key

KASS is the session key generated by the TGS for the sole use
of A and SS

The pink encryption block is the Service Granting Ticket

SGT

Figure 4. Ticket granting service returns ticket to client.

The message returned from the TGS to the client has a

similar structure to that sent by the AS to the client, it

consist of ID and realm of the client together with a re-

usable ticket SGT facilitating a single-sign-on procedure

verifying the authentication of the client; together with an

encryption of the session information relevant to the

client and SS communication using the client-TGS

session key previously issued by the AS. This session

information includes a client-SS session key, the realm,

ID, and IP address of the client, along with duration

stipulations.

Step Five: the client stores the authentication ticket for

presentation to the SS, and creates a new authenticator,

which is encrypted with the client-SS session key that

was previously retrieved. It contains the clients’ realm

and ID, with a new time-stamp, an optional Sequence

Number to detect replays, and an optional session sub-

key for the subsequent client SS communications, Fig. 5.

ASS: KSS(KASS+RA+A+IPA+Tf)+

 KATGS(A+RA+TS1)+O

Here: O refers to optional fields that A can request

Figure 5. Client requests service from the server service.

The optional field indicates the client can request the

SS verify its identity, showing that it really is the SS that

the client intended to communicate with, thus insisting on

mutual authentication.

It should be noted that although A presents an

authenticated realm SGT to the SS in question, the TGS

230

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

does not perform any match of IDA to IDSS. Meaning that

the SS can later return a message to A indicating that

despite authentication A is not authorised to used that SS.

The usual means of achieving this is by Access Control

Lists, but that is topic which does not concern us here [7].

Step Six: the final authentication message returned to

the client from the SS is of the form, Fig. 6.

SS  A: KASS(TS2+SK+SQN0)

Here: TS2 is a new timestamp

SQNO is a sequence number
SK is a flag requesting a new sub-key

Figure 6. Server service verifies its ID, mutual authentication.

The SS decrypts the SGT using its key, and then maps

the ID and IP address of the user's workstation and the ID

of the server SS. Confirmation of SS ID takes the form of,

where applicable, the sub-key (if SK is absent the

previous client server service session key KASS is used)

and sequence numbers contained in the message, together

with a new timestamp TS2 (it is not possible for an

attacker to re-construct this massage without prior

knowledge of the session key KASS, and so TS2 can safely

be returned without modification), encrypted with client-

SS session key. The inclusion of successively

incremented sequence numbers, upon iteration of

message exchanges is intended to prevent replay attacks

within the session. Only the client and the correct SS

have the session key, in this way the SS has authenticated

itself to the client.

Without wishing to digress too far, a nonce is

generated and used only once. For security reasons, to

prevent guessing its value, it should be created by a

random number generator. An SQn is incremented upon

each iteration; the original may also be a random number.

IX. IPSEC

Communications at the IP stack layer can be secured

by a protocol suite known as IPsec [8]; this facilitates

encrypted host to host transfers across an insecure

channel by modifying each IP packet during a

communication session [9] and [10]. Without going into

the detail of Transport Mode and Tunnel Mode, the latter

is mostly used for Virtual Private Network connections.

IPsec can protect any and all application traffic over an IP

network. In Transport Mode it also includes protocols for

establishing mutual authentication between entities at the

start of a session (entity/host authentication does not

concern us), and the negotiation of cryptographic keys for

use during that session. In short, Transport Mode can

secure communication across an insecure network.

The IPsec architecture uses the concept of security

associations, SA’s, to form the basis for implementing

security functions in IPsec. An SA is a grouping of

algorithms (such as keys, signatures, polices) used to

encrypt and authenticate a particular unidirectional flow

of messages. An SA is defined on a particular host for

communications with a unique remote host, and the

policies therein are applied to selected packets intended

for that host before transmission. Thus, for meaningful

bi-directional traffic, these flows are secured by a pair of

SA’s, one located at each host.

X. KERBEROS OVER IPSEC

It is evident that the encryption of message exchange

sequences between client and server to achieve

authentication in the Kerberos protocol is intended to

preserve confidentiality and integrity between the

concerned parties. It is equally clear that where IPsec is

already implemented between those parties it is more

than capable of providing suitable encryption services

and associated guarantees of confidentiality and integrity.

The purpose of encrypting the tickets is to hide

information from those parties through which it must

travel before reaching its destination, and where the act of

decryption verifies identity by virtue of possessing the

necessary key.

where a communication channel can implement IPsec for

network traffic, the initial message of a client requesting

services of a Server Service, SS, is as before to the

Authentication Server, AS, Fig. 7.

A  AS: A+RA+TGS+N1+Tf

Figure 7. Initial message from client to authentication server.

New Step two: the AS reply now differs from that

previously indicated, but the TGT still needs to be

encrypted with KTGS. Nonces are still necessary because

IPSec’s sliding window does not provide sufficient

protection against replay attacks.

ASA: A+RA+KTGS(RA+A+IPA+Tf)+RTGS+TGS+N1+Tf

The TGT is still encrypted with KTGS (A to TGS

session key) but now as client to AS communications are

protected by IPsec encryption there is no need for extra

encryption of the session information between them.

New Step Three: the client now sends a request to the

TGS for a TGT

A  TGS: SS+Tf+N2+ KTGS(RA+A+IPA+Tf)+A+RA+TS1

It is no longer necessary to encrypt the authenticator

with the KATGS (A to TGS session key), therefore this key

was not relayed to the client in the previous message.

Since A cannot process the TGT it passes this on intact

New Step Four: We now examine the TGS reply to A.

TGSA: A+RA+KSS(KASS+RA+A+IPA+Tf)+

 KASS+Tf+N2+RSS+SS

As the session information between them does not

need to be encrypted, the KATGS was omitted from the

231

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

previous TGT message. The SGT passing through A still

needs to be encrypted, A cannot process it.

New Step Five: the client now conveys the SGT

(Service Granting Ticket) it has received from the TGS to

the SS, together with authentication information.

A  SS: KSS(KASS+RA+A+IPA+Tf)+A+RA+TS1+O

New Step Six: Where mutual authentication of the SS is

requested by the client, the final message back to the

client is no different to the pre-IPsec version, and is of the

form

SSA: KASS(TS2+SK+SQN0)

The overall message exchange scheme remains

Kerberos like, Fig. 8.

Figure 8. Kerberos message exchange sequence.

XI. IMPLEMENTATION

Not directly stated though implied is the feasibility

assessment of running Kerberos in its present form of

over an IPsec connection. Although this infers double

encryptions, this would be possible to implement in a

similar way to Kerberos over TLS [11] and [12] – all that

would be needed is a similar hook, to that within

Kerberos for TLS, such as STARTIPS, instead of

STARTTLS. With minor modifications to the IP packet

header and usage, it would be possible to initialise

cooperation between Kerberos and IPsec in such a

minimalistic fashion. A flag in the IPsec header could

indicate that the payload data contains Kerberos

information.

However, it is not such a great advantage for IPsec to

be aware of its payload. It is more important for Kerberos

to know that it can rely on IPSecs’ encryptions to use the

modified structure proposed above.

Kerberos would need to detect if IPsec could be

enacted so that the newer protocol can be used. One

possibility might be to inspect IP packets for the presence

of the IPsec header; another could be detecting the

presence of an SA already existing for the desired host.

Otherwise, upon initiating authentication requests

Kerberos would need to initialise the IPsec SA set up

negotiations. This would be solved programmatically; the

Kerberos software will need to interact with the IPsec

software on its host to trigger the first IKE phases of SA

setup necessary for IPsec communication with the

intended partner host.

For backwards compatibility it might be necessary to

communicate with legacy Kerberos systems, the

possibility of falling back to Kerberos V5 would be

required. In which case there is no need to insist on the

use of IPsec unless it is anyway useful to know that the IP

packet pay load contains Kerberos data. Further, those

legacy hosts possibly may not be IPsec enabled, but

should anyway be allowed to bargain for authentication.

XII. GLOBAL APPLICATION

It is anticipated that reducing the volume of

encryptions processed together with a simplified Ticket

structure would involve benefits for lowering the

bandwidth and processor cycles required on large scale

enterprise installations, particularly when one realm is

joined to another by a router to router connection, where

these reductions could be significant for such bottlenecks.

Further, there is the general rule of thumb that less

complex systems should be easier to maintain.

XIII. PHASE II

It has been shown above that in principle the idea of

streamlining Kerberos is valid when IPsec can be relied

upon to provide encryption services. The required

procedures for Kerberos to instigate IPsec for its ticket

exchanges were also indicated.

The next phase of the investigation considers removing

in entirety encryptions from the Authentication system,

and the associated further modifications to the structure

of messages exchanged. Such open ticket exchanges

without encryption boundaries places far more emphasis

on the installed program code to perform the necessary

information filtering and routing. This is nothing new, for

it has been part of Kerberos from the beginning.

To this end the reliability of IPsec encryption must be

considered, if only briefly. In particular during SA

(security association) setup the protocol decrypts packets

in dynamic memory before re-transmission. If we take

this as being secure, similar methods can be employed

with the revised Kerberos, entirely eliminating the need

for encryptions within the Authentication Protocol.

Relying on updated program code to deconstruct any

elements purpose of whose temporary existence on a host

is merely intended for re-transmitted.

Revised message structures:-

Step 1: proceeds exactly as before

A  AS: A+RA+TGS+N1+Tf

Step 2: AS reply to A

ASA: RA+A+IPA+RTGS+TGS+N1+Tf

The AS does not return any duplicated information, but

still confirms to A that this is who it is answering.

Step 3: A requests an SGT from the TGS

A  TGS: SS+Tf+N2+RA+A+IPA+TS1

232

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

The major change here is in the reduction of session

information transmitted.

Step 4: TGS returns a SGT to A

TGSA: A+RA+IPA+Tf+N2+RSS+SS

It is no longer necessary to transmit encryption keys

inside of encrypted tickets.

Step 5: A forwards the SGT to the SS

A  SS: RA+A+IPA+Tf+TS1+O

The SS can now accept A as being authenticated.

Step 6: the SS verifies its identity to A

SS  A: TS2+SK+SQN0+O

Here the major change is that for mutual authentication

the SS return to A the only information it has received

origination from that source, that is O.

The revised procedure indicates that it is no longer

necessary for any of the hosts involved to store

encryption keys, as these are no longer needed for

encryption/decryption, and their transmission is also

therefore superfluous.

XIV. RELATED WORK

These proposals should not be confused with

Kerberised Internet Negotiation of Keys, KINK [13],

which utilises Kerberos as a Trusted Third Party to

manage peer host authentication for the construction of

Security Associations, SAs, during the initialisation

phases of IPsec communication setup.

Indeed, the protocol proposed would negate KINK, as

this relies on the legacy encryption protocol, which this

new protocol does without.

XV. CONCLUSION

It is possibly fair to say that had IPsec been known at

the time Kerberos was designed that these factors may

well have been taken into consideration.

XVI. SUGGESTIONS FOR FURTHER RESEARCH

From the above a running prototype of the proposed

modifications to the Kerberos structure in network

environment, in both first and second phases, would be an

obvious next stage for anyone with the resources to set

this up. This should be done along with security

resilience testing and performance testing.

Investigations should also be made into implementing

similar measures for other aspects of IPsec such as

Tunnel Mode and Encapsulating Security Payload, ESP

[14].

ACNOWLEDGMENT

The author wishes to thank Dr. Robert Askwith of

LJM University for his guidance during the preparation

of the dissertation that led to this paper.

REFERRENCES

[1] P. C. Cheng, “An architecture for the internet key exchange

protocol,” IBM Systems Journal, vol. 40, no. 3, pp. 721-746, 2001.
[2] W. Stallings, Network Security Essentials, 4th Edition, Pearson

Publishing, March 2010.
[3] J. Steiner, C. Neuman, and J. Schiller, “Kerberos: An

authentication service for open network systems,” in Proc. Usenix

Conference, February 1988, pp. 191-202.
[4] M. Burrows, M. Abadi, and R. Needham, “A logic of

authentication,” ACM Transactions, vol. 8, no. 1, pp. 18-36,
February 1990.

[5] B. C. Neuman and T. Ts’O, “Kerberos an authentication service

for computer networks,” IEEE Communication Magazine, vol. 32,
no. 9, pp. 33-38, September 1994.

[6] B. C. Neuman, T. Yu, S. Hartman, and K. Raeburn. (July 2005).
The Kerberos network authentication service (V5), RFC 4120.

[Online]. Available: http://tools.ietf.org/html/rfc4120

[7] R. S. Sandhu and P. Samarati, “Access control: Principles and
practice,” IEEE Communication Magazine, vol. 32, no. 9, pp. 40-

48, September 1994.
[8] R. Atkinson. (August 1995). Security architecture for the Internet

protocol. RFC 1825.(Online). Available:

http://tools.ietf.org/html/rfc1825
[9] K. G Patterson, “A cryptographic tour of the IPsec standards,”

Information Security Technical Report, December 2005.
[10] C. A. Shue, M. Gupta, and S. A. Myers, “IPsec: Performance

analysis and enhancements,” presented at IEEE International

Conference on Communications, Glasgow, Scotland, 24-28 June,
2007.

[11] S. Josefsson. (May 2011). Using Kerberos version 5 over the
transport layer security (TLS) protocol. RFC 6251. [Online].

Available: http://tools.ietf.org/html/rfc6251

[12] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu,
“Cryptographically verified implementations for TLS,” in Proc.

15th ACM Conference on Computer and Communications Security,
October 2008, pp. 459-468.

[13] S. Sakane, K. Kamada, M. Thomas, and J. Vilhuber. Kerberised.

(March 2006). Internet negotiation of keys (KINK). RFC 4430.
(Online). Available: http://tools.ietf.org/html/rfc4430

[14] S. Kent and R. Atkinson. IP encapsulating security payload (ESP).
RFC 2406. November 1998. Available:

http://tools.ietf.org/html/rfc2406

Dean Rogers was educated at Porth Grammar

Technical School, South Wales, and Oxford Kellogg
College, and has just completed (June 2013) an MSc in

Computing, specialising in Computer Security, at LJM

University, UK.He has worked as a network
administrator, and a DBA, for some household names,

and is currently considering his future.

233

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

