
On the Effect of Swap in Application Switching

for Android Platform with Pattern Analysis of

eMMC

Jae Gon Lee
1,2

 and Jun Dong Cho
1

1
Sungkyunkwan University, Suwon, Korea

2
Samsung Electronics Co. Ltd., Hwasung, Korea

Email: jg47.lee@samsung.com, goirisia@skku.edu, jdcho@skku.edu

Kyu Min Park, Byung Yo Lee, Hak Yong Lee, Kwang Won Park and Kwan Yong Jin

Samsung Electronics Co. Ltd., Hwasung, Korea

Email: kyumin.park@samsung.com, yo0831.lee@samsung.com, hakyong.lee@samsung.com,

junhaa.park@samsung.com, kwanyong.jin@samsung.com,

Abstract—Currently, smartphone users often dissatisfy from

the specifications provided by the manufacturer while using

some services. Using swap operation is one way to solve this

problem. In this paper, we evaluate the effect of swap in

application switching for Android platform. By utilizing

swap, the number of active applications is increased, and the

application loading time is decreased, improving users

experience performance. In addition, due to less time

consumption, the swap also contributes to reduce the total

energy consumption. Finally, from our experiments, in

order to better support the swap, we realized that the

sequential performance of storage with large I/O is

important due to storage feature.

Index Terms—swap, application switching, storage I/O

pattern of swap, eMMC, android, smartphone

I. INTRODUCTION

Recently, various smart phone products with

competitive price expect the maximum performance

adopting the octa-core application processor (AP) in

mobile environment. Smartphone users search the

information, share their daily life and enjoy a game

through various applications that require more memories

and storages.

The memory and storage components are allocated by

hardware intellectual property (IP), and used by operating

system (OS) in order to provide some service. Equipped

memory is smaller than equipped storage because of

memory hierarchy. Therefore, the memory restriction

affects considerable user’s dissatisfaction in the low price

model. Thus, the efficient memory management is

important in order to ensure the various features of a

smartphone. Using swap is one way to solve this problem.

Swap is a memory management technique that the

storage is used as virtual memory space, thus the system

Manuscript received August 1, 2013; revised September 23, 2013.

have the virtually more memory space than physical

memory. [1]

Android is based on Linux that supports swap feature.

However, currently smart phone does not use swap in

Android platform. Because embedded Multi-Media Card

(eMMC) that is the storage for Android platform had low

performance and lifetime limit, thus the system

performance was degraded if we use swap. [2]

Nowadays, the advanced eMMC outperforms 7.7 times

I/O performance than the previous eMMC, providing

some performance improvement features like packed

command.[3]-[5] Thus current storage eliminates the

overhead of swap caused by low performance.

In this paper, in order to find the effect of swap for

Android platform, we implement swap in a smartphone,

GT-I9300, and then perform experiments for application

switching. We observe the number of active application

when application is loaded, and measure the reduction of

time and system energy caused by difference of number

of active application. Also, we analyze the swap pattern

of eMMC using logic analyzer and blktrace tool.

This paper is organized as follows. Section II reviews

the fundamental of swap and NAND flash memory, and

activity/memory management in Android and eMMC.

Section III performs experiment to identify the effect of

swap point of view the system. Section IV shows the

swap pattern analysis in eMMC. Finally, we conclude in

Section V.

II. RELATED WORK

A. Virtual Memory and Swap

Virtual memory overcomes the limited size of physical

memory such that OS should be used efficiently. User

requires more memory than the amount of physical

memory. Virtual memory is a memory management

technique that some parts of the processes data are stored

in the storage instead of the physical memory, i.e. the

International Journal of Electrical Energy, Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 82
doi: 10.12720/ijoee.2.1.82-88

storage is used as virtual memory space. Especially,

virtual memory is effective to support a multi-tasking

environment that runs variety of programs that are loaded

and executed in memory.

Figure 1. The concept memory swap.

Swap is a method how to implement a virtual memory

when the processes attempt to allocate more memory than

physical memory. And then OS begins to swap memory

pages to and from the storage. High priority process starts

to run and the amount of available memory drops below a

certain level. OS stores some of memory pages of the

lower priority processes onto the storage and increases

the amount of available memory; it is called swap-out. If

the process of the low priority gets to be performed, OS

store the victim data that was stored in storage before to

the memory; it is called swap-in as shown in Fig. 1.

Replacement policies are First In First Out (FIFO), Least

Recently Used (LRU), Least Frequently Used (LFU) and

so on.

B. Android Activity and Memory Management

Figure 2. The activity life cycle in Android.

An activity is the main component in applications for

interacting with users. It is a single user-interface (UI) on

the screen and focus user’s action. The application has

different screens and each screen is implemented other

activities. When the screen is changed, the new activity

performed and existing activity is stored in a stack. Each

activity is managed through a stack. Fig. 2 describes the

life cycle of an Activity in Android.[6] Activity has 7

methods to change its state. If application is loaded for

the first time or there was no data about application in the

memory, activity initializes application through the

method called onCreate(). But if data of the application

remains in the memory, application is reloaded without

onCreate() and number of block I/O is reduced from

storage, so reloading time is shorter than first loading

time.

Android increases available memory space using Out

Of Memory Killer (OOMK) and Low Memory Killer

(LMK) when memory is insufficient. OOMK is the

process used in Linux in order to kill the fewest number

of applications and increase the available memory

space.[7] OOMK does not give any priority to process, so

the important application might be removed.

LMK classifies process as six types according to the

importance shown in Table I. Each type has the minimum

value of available memory space in Android. In low

memory situation LMK starts killing the process from

low priority groups.

TABLE I. SIX TYPES OF PRoCESSES ARE CLASSIFIED BY LMK

Process Type Description

FOREGROUND_APP
This is the process running the
current foreground app

VISIBLE_APP
This is a process only hosting

activities that are visible to the user

SECONDARY_SERVICE
This is a process holding a

secondary server

HIDDEN_APP
This is a process only hosting
activities that are not visible

CONTENT_PROVIDER
This is a process with a content

provider

EMPTY_APP
This is a process without anything

currently running in it

C. Nand Flash Memory and eMMC

As shown in Fig. 3, flash memory cell consists of one

transistor with a floating gate. Information is stored in

floating gate. There are 2 kinds of flash memory, NAND

and NOR but currently the dominating type is NAND

Flash. So we consider only NAND flash memory in this

paper. NAND flash memory is classified into two types,

single-level-cell (SLC) and multi-level-cell (MLC). SLC

stores only a single bit of data in flash cell and MLC

stores data more than 2 bit in flash cell. 3 bit MLC was

commercialized recently. [8]

Figure 3. The fundamental cell in flash memory.

International Journal of Electrical Energy, Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 83

NAND flash memory has 3 basic operations such as

read, write, erase. Electrons are trapped onto the floating

gate and these electrons modify the threshold voltage of

control gate. Read operation distinguishes the difference

of the threshold voltage between 0 and 1. Default state of

NAND flash memory is logically equivalent to a binary 1

value. Write operation (also referred to as program)

changes the status to 0 by programming the floating gate.

Erase operation is bringing back the state of flash

memory to its default state with value 1.

NAND flash memory comprises billions of flash cells

that are organized in a hierarchical architecture like page

and block as depicted in Fig. 4. Page is a basic unit to

operate read and write. It has various size of 4KB ~

16KB. A block consists of multiple flash pages and is in

unit of erase operation.

Write operation of NAND flash memory has one

limitation. It has to operate to certainly erase before write

because overwriting is impossible. In other words, a flash

cell has to be erased before it can be re-write. The

number of write and erase is limited because of flash’s

characteristic. The available program/erase (P/E) cycles

of 3 bit MLC 1000 times worse than SLC as shown in

Table II. [9]

Figure 4. The architecture of a typical NAND flash memory.

TABLE II. ENDURANCE OF NAND FLASH MEMORY

 SLC 2 bit MLC 3 bit MLC

Bit per Cell 1 2 3

P/E Cycle
(Endurance)

100,000 3,000 1,000

TABLE III. INTERFACE FEATURE OF EMMC

Bus speed modes Frequency
Max Data

Transfer

Backwards Compatibility
with legacy MMC Card

0~26MHz 26MB/s

High speed SDR 0~52MHz 52MB/s

High speed DDR 0~52MHz 104MB/s

HS200 0~200MHz 200MB/s

There are many kinds of products based on NAND

flash memory like solid-state drive (SSD), secure digital

(SD) card and eMMC. Of these, the eMMC is used with

the storage of the smart phone, tablet and etc. The latest

specification of the eMMC supported form the JEDEC is

released version 4.5. This product supports the max

clock frequency of 200MB/s. Therefore, processing

speed of command and response improves 4 times and

processing time of data improves 2 times compared to

previous 52MB/s as shown in Table III.

Additionally, some performance improvement features

had been added like Context ID, Packed Command, and

Trim & Discard. [9]

III. SWAP EFFECTIVENESS ANALYSIS DUE TO THE APP

SWITCHING

If application starts loading, associative data is stored

in the memory and available memory space is decreased

that much. If some of new applications are executed

continuously, the available memory space is insufficient

and LMK terminates one or some of executed

applications. Then related data of the terminated

applications is deleted from the memory and attempts to

load that application again, reloading time is same as

first loading. If application is alive and related data is

remained in the memory, (that situation is called active

application) active application runs immediately so

reloading time is shorter than first loading.

To use swap in Android platform increases available

memory space because some of data of active application

are written for swap-out to the storage. So the case of

application termination due to the lack of memory

decreases and accordingly the number of active

applications can be increased. Users have their

frequently used application in daily life and use them

repeatedly. Increasing the number of active applications

due to swap reduces the loading time of the application

and contributes to improving users experience

performance. So we experimented on the effect of swap

with the repeated switching of 10 applications loading

and analyzed in terms of system effectiveness.

International Journal of Electrical Energy, Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 84

A. Experiment Condition

TABLE IV. SPECIFICATION OF GT-I9300 SMARTPHONE

Model CPU DRAM Storage OS

GT-I9300
Exynos 4412

1.4GHz
1GB 32GB

Jelly Bean

4.1.1

GT-I9300 that we used is commercial Android

smartphone on Samsung and detailed specifications of it

are follows in Table IV.

Storage was used the 3bit MLC of eMMC and was

deleted 5% after full write in the user area for severe pre-

condition. We built the kernel of GT-I9300 to use swap

and experiment on the effect of swap using Android

Debug Bridge (ADB). We created swap file allocated

1GB in eMMC and used the commercial game

applications as follows in Table V.

TABLE V. THE GAME APPLICATIONS USING THE EXPERIMENT

Application Name
Execution size on

DRAM[MB]

Loading

time[sec]

Ben 10 : Xenodrome 39.15 7.12

Bomb The Zombies 13.89 4.84

Drag Racing 23.49 4.31

Cordy2 45.13 13.81

Lep’s world 19.44 4.00

Tap sonic 19.54 5.81

Death Worm 43.51 5.41

PrettyPetSalon 8.79 2.06

Angry Birds Rio 25.75 8.44

Krazy Kart Racing 5.81 8.87

As shown in Fig. 5, memory density of GT-I9300 is

1GB but users can use the free space area of about

460MB that is only 45% of the total space. The Reserve

area (Res.) was used by hardware IP and OS (or by

Telecommunications Company or smartphone

manufacturer) used the used area in order to provide

some service. OS recognizes used area and free area so

ratio of memory space between used area and free area

are 45% and 55% by OS. Thus, we set the swappiness to

77 when the App. begins swap.

Figure 5. The memory usage in GT-I9300.

Figure 6. The application switching sequence.

Experimental scenario is loading ten game

applications and switches each applications three times

more as shown in Fig. 6. Repeating ten applications by in

order of precedence is very severe condition and users

use these applications arbitrarily so that doesn’t represent

the user scenario. Therefore, we classified the

experiment as two conditions and evaluated four cases.

Random order of ten applications without swap is default

condition in GT-I9300. These four cases of scenario are

organized as follows.

Case 1: Random order with swap

Case 2: Random order without swap

Case 3: In order of precedence with swap

Case 4: In order of precedence without swap

One of application is switched to HIDDEN_APP

when loading is complete. In case of first loading was

measured from onCreate() to onStop() by timer. In case

of reloading was measured form onCreate() or

onRestart() to onStop(). If data of the application remains

in the memory, active application is reloaded through the

method called onRestart() without onCreate. Power is

measured voltage drop across a shunt resistor connected

to battery by Keithley. Using this value and measured

time, we calculate the amount of system energy.

B. Experiment Result

Figure 7. The loading time of 4 cases.

Fig. 7 shows the result of loading time about four

cases scenario. In case of using swap, it had the similar

result regardless of the order of ten applications.

However, it had the difference of result according to the

order of ten applications when system is not supported

swap. In case 4, the previously executed application can

be terminated for available memory space expansion. As

a result 2nd-Reloading time was similar to 1st-Loading

because all of ten applications had been killed before

they have been reloaded. Krazy Cart Racing application

that is 10th applications in scenario was not terminated,

continued with remained active application in 3rd-

Reloading and 4th-Reloading, so 10% time gain occurred.

In case 2, the number of active applications increased as

compared with case 4, there were four active applications

existing on an average in 2nd/3rd/4th-Reloading.

International Journal of Electrical Energy, Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 85

Therefore, it had the gain of total loading time about

17%.

Figure 8. The loading time of case 1.

If swap is supported in system than swap-out occurs

from first application loading. As a result, all of

applications remain active and some of related data

continue to remain in the memory without swap-out data.

In this case of reloading, some data can be run directly

from the memory and others are loaded from the eMMC

so execution speed improvement occurs about 76% as

shown in Fig. 8 and users feel fast to execute the

application reloading. The effect of swap has the gain of

total loading time about 54% as compare with case 4 and

45% as compare with case 2. However, the overhead due

to the use of swap occur 1.53s in 1st-Loading.

Additional energy consumption increases 3% more

due to swap in 1st-Loading as shown in Fig. 9. But

comparing case 1 and case 4, reduction of application

switching time affects decreasing energy consumption

about 54% as shown in Fig. 10.

Figure 9. The comparison of energy consumption for first-Loading in
swap and without swap.

Figure 10. The comparison of energy consumption for application
switching in swap and without swap.

IV. SWAP PATTERN ANALYSIS IN STORAGE

A. Timing Analysis of eMMC in Appication Loading

TABLE VI. THE ACCESSED TIME AND DATA SIZE IN 1ST-LOADING

Swap
Total

Time[s]

Write Read

Time[s] Data[MB] Time[s] Data[MB]

On 68.49 1.26 35.15 3.32 189.01

Off 66.96 0.17 2.15 3.31 186.91

Gap 1.53↑ 1.09↑ 33.00↑ 0.01↑ 2.10↑

We measured the I/O pattern from to eMMC using

Logic Analyzer and blktrace tool. Table VI shows

eMMC accessed time and data size classified by read and

writes in 1st-Loading at ten applications in order of

precedence.

71% out of overhead arising from using swap is a data

write time for the swap-out. There are only 2.15MB of

write operation for meta update when system is not

supported swap. However, 33MB of write operation for

swap-out occurs frequently when system is supported

swap.

Table VII shows the result of eMMC accessed time

and data size classified by read and write in application

switching in order of precedence. 89.66MB of write

operation in application switching occurs. 3 bit MLC is

fatal endurance due to 12.5 times write operation in swap

condition. Total data size for read is 906.24MB because

all data is needed in loading application except Krazy

Cart Racing application when system is not supported

swap. However if system uses swap, swap-out data is

needed in reloading application and total data size for

read is 637.87MB so it takes as little as 274MB.

TABLE VII. THE ACCESSED TIME AND DATA SIZE IN

APPLICATION SWITCHING

Swap
Total

Time[s]

Write Read

Time[s] Data[MB] Time[s] Data[MB]

On 113.86 4.15 89.66 11.32 631.87

Off 247.73 2.11 7.13 16.42 906.24

Gap 133.87↓ 2.04↑ 82.53↑ 5.1↓ 274.37↓

International Journal of Electrical Energy, Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 86

B. Swap Data Pattern Analysis

TABLE VIII. THE MAJOR I/O SIZE OF EMMC SWAP PATTERN

WWrriittee RReeaadd

IIOO

[[KKBB]]
CCoommmmaanndd

PPoorr[[%%]]
BB//WW

[[MMBB//ss]]
IIOO

[[KKBB]]
CCoommmmaanndd

PPoorr[[%%]]
BB//WW

[[MMBB//ss]]

4 18.70 5.84 4 11.20 19.95

8 8.31 9.11 8 0.45 37.19

16 3.90 14.64 16 1.24 45.80

32 3.12 20.00 32 22.74 60.77

64 0.52 27.75 64 16.29 74.40

128 0.52 46.12 128 33.71 78.48

Packed 11.43 45.33 256 1.70 79.95

Table VIII shows the command portion and bandwidth

classified by major I/O size of eMMC swap pattern. GT-

I9300 smartphone used 11% of packed command in this

scenario. I/O size of packed command spread from

524KB to 3904KB and total data size for swap-out using

packed command is 58.41MB. Swap-out data size out of

total write was almost 94% and sequential pattern for

Swap-out was measured more than 81% in Table IX.

Packed command affected increasing sequential pattern

of eMMC. Swap-in data size out of total read was almost

11% and sequential pattern for Swap-in was measured

more than 55%. Thus, we identify that sequential

performance of the eMMC is very important in particular,

due to the large I/O size in application switching with

swap scenario.

TABLE IX. THE DATA SIZE, BANDWIDTH AND SEQUENTIAL PORTION

OF SWAP PATTERN

Swap

Enable

Write Read

Data

[MB]

B/W

[MB/s]

Seq.

[%]

Data

[MB]

B/W

[MB/s]

Seq.

[%]

Total data 89.66 21.60 37.71 631.87 55.82 14.17

Swap data 84.25 34.03 81.30 68.36 73.92 55.66

V. CONCLUSION & FUTURE WORKS

In this paper, we study about the effect of swap in

Android platform. Firstly, we evaluate the effect of swap

to increase number of active applications so as to reduce

the application loading time and to improve user

experience performance. Secondly, the system energy

consumption was reduced. Thirdly, we investigate swap

pattern of eMMC and effects of packed command for

write operation.

For future works, we need to optimize the eMMC for

swap. The eMMC supports user partitions that enhance

mode. Thus, we need to implement the swap partition

mapping to user partition of eMMC.[3] Enhanced mode

of eMMC was changed from 3 bit MLC to SLC, thus the

eMMC has 100 times margin of endurance of eMMC.

REFERENCES

[1] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts, 8th ed., John Wiley & Sons Inc., 2008, ch. 8-10.

[2] D. Bornstein, “Dalvic vm internals,” presented at 2008 Google
I/O Developer Conference, San Francisco, California, May 28-29

2008.

[3] eMMC Standard (4.5 Device), JESD84-B45 Specification,

JEDEC Solid State Technology Association, 2011.

[4] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” ACM Transactions on Storage (TOS), vol. 8, no. 4,

no. 14, 2012.

[5] H. Kim and D. Shin, “Optimizing storage performance of android
smartphone,” presented at 7th International Conference on

Ubiquitous Information Management and Communication, Kota
Kinabalu, Malaysia, January 17-19 2013.

[6] Activity life cycle. [Online]. Available:

http://developer.android.com/reference/android/app/Activity.html
[7] M. Gorman, Understanding the Linux Virtual Memory Manager,

Prentice Hall Professional Technical Reference, 2004, ch. 12-13.
[8] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti,

“Introduction to flash memory,” IEEE, vol. 91, no. 4, pp. 489-502,

April 2003.
[9] M. C. Yang, Y. H. Chang, C. W. Tsao, and P. C. Huang, “New

ERA: New efficient reliability-aware wear leveling for endurance
enhancement of flash storage device,” presented at 50th Annual

Design Automation Conference, Austin, TX, USA, May 29-June

07 2013.

Jae Gon Lee was born in 24th of December 1980 at

Pohang, Korea. He is pursuing his Master degree

from Sungkyunkwan University (SKKU) and he is in
charge of the eMMC planning and mobile application

engineering. He has been with Samsung Electronics
Co. Ltd., Memory division, Hwasung, Korea, since

2007.

Kyu Min Park was born in 2nd of July 1984 at Seoul,
Korea. She majored in computer science

from Soongsil University (SSU). She joined Samsung

Electronics in 2007 and she is in charge of the eMMC

planning and mobile application engineering.

Byung Yo Lee was born in 31th of August 1976 at
Seoul, Korea. He majored in electronics engineering

from Korea University. Since 2003, he is in charge

of hardware development in SK Teletech such as
Camera, LCD, Power and Audio. He joined Samsung

Electronics in 2007, has worked as a senior engineer
for eMMC products in the application engineering team.

Hak Yong Lee was received his Master’s degree in
the Department of Electronics and Computer

Engineering in 2013 from Hanyang University

and his Bachelor’s degree in Information and
Communication engineering from Sungkyunkwan

University, Korea in 2003. Since 2003, he is an

engineer of Samsung Electronics in Hwasung-City, Gyenggi-Do,

Korea. His research interests include embedded systems, file system,

and flash memory.

International Journal of Electrical Energy, Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 87

http://en.wikipedia.org/wiki/San_Francisco,_California

Kwang Won Park was born in 17th of December
1974 at Seoul, Korea. He received the B.S. degree

in E lec t ron ics Mater ia l s Engin eerin g from

Kwangwoon University in 2000. He has been with
Samsung Electronics Co. Ltd., Hwasung, Korea,

since 2000. He has worked as a associate engineer for
SDR, DDR, Rambuse DRAM, NOR Flash products

in the Memory PA Team (2000~2004) & has worked as a engineer for

Mobile Memory, Flash Memory products in the Application
Engineering Team(2005~).

Kwan Yong Jin was born in 30th of April 1966 at
Wonju, Korea. He received the B.S. degree in

electronics engineering from Inha University, Inchen

Korea, in 1988. He has been with Samsung
Electronics Co. Ltd., Korea, since 1990 and he has

worked as a associate engineer for EDP DRAM, Mobile DRAM and
Flash products in the application team.

Prof. Jun Dong Cho received Ph.D. degree from
Northwestern University, Evanston, IL, 1993, in

computer science. He was a Senior CAD Engineer at

Samsung Electronics, Co., Ltd. He is now Professor
of Dept. of Electronic Engineering, Sungkyunkwan

University, Korea. He received the Best paper award
at the 1993 Design Automation Conference. He has

been an IEEE Senior Member since April 1996. His research interests

are in the area of System on Chip Design Optimization and lower
power designs.

International Journal of Electrical Energy, Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 88

