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Abstract—The efficient planning of radial distribution 

feeders is important to ensure energy supply to load 

demands as suitable quality of the service is provided. This 

planning is usually separated into two decision-making 

stages, i.e., design of topology infrastructure and protection 

system shaping. Moreover, these stages are performed 

pursuing the achievement of multiple objectives such as 

costs minimization and reliability maximization. In 

consequence, a multi-stage and multi-objective optimization 

problem arises. In this paper, an efficient Pareto-based 

approach is proposed to solve the aforementioned kind of 

optimization. Infrastructure preparation considers possible 

interconnections between loads and installation of 

Distributed Generation (DG). Furthermore, the shaping of 

protection system considers the amount of devices as their 

efficient placement in the feeder. DG have been largely 

considered as an alternative to increase the operation 

performance of distribution systems (DSs), besides its 

merely function to provide energy. On the other hand, Non-

Dominated Sorting Genetic Algorithm (NSGA-II) is 

implemented to solve each stage of the planning. Finally, 

simulations are applied on a 33-nodes test feeder with 

available sources to install DG.  

 

Index Terms—distribution system planning, multi-objective 

optimization, multi-stage optimization, evolutionary 

algorithm, optimum reclosers placement, optimal 

reconfiguration, Pareto-optimal solutions 

 

I. INTRODUCTION 

In most real world optimization problems the solution 

must to be found considering multiple objectives instead 

of one. Whereas these objectives are often in conflict, a 

trade-off relation among them arises. I.e., it is necessary to 

sacrifice the performance of one or more objectives to 

enhance the other ones. Besides, when the decision 

making process is related, but not limited, to systems 

planning, it is possible that several planning stages should 

be performed. Thus, optimal procedures are required for 

each stage. Moreover, it is possible to realize a single 

solving process that considers all necessary variables. 

Nevertheless, both alternatives have non-desirable 

limitations and assumptions. In the first case, when 

passing through stages it is necessary to choose a definite 

solution, or say a global optimum, hard task when we talk 

about multi-objective optimization. A wrong selection 

may lead to biased results. In the second case, considering 
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all possible variables is an endless task, and when realized, 

results an extremely widespread landscape, which may 

hinder or limit the exploration over the search space. In 

the same way, a large number of function evaluations 

must to be realized, demanding a prohibitive amount of 

computational resources and slowing down the algorithm. 

In consequence, we will focus on the first alternative, 

proposing an approach to avoid biased solutions when 

passing through stages. 

To the best of our knowledge, multi-stage optimization 

jointly with multi-objective decision making has not been 

elucidated in the literature. We introduce a novel approach, 

namely Prime-Pareto, to attain efficient solutions of this 

kind of problems. Here, we address the complexity when 

planning the attendance of energy demands, pursuing 

appropriate relia- bility indices and minimizing 

investment. Identified stages of this planning comprehend 

infrastructure outline and protection system shaping. 

In accordance with the literature, optimal planning of 

distribution systems (DS) toward suitable reliability 

performance, is a complex problem because its 

optimization stages are described by non-linear and non-

differentiable objective functions, as well as combinatorial 

solutions. Traditionally, the planning has been treated as a 

problem of a single objective function where investments 

and available resources are used in a single instant of time 

[1]–[3]. The radial feeders are normally provided with 

alternate routes of power supply to ensure backup 

connections that minimize the impact of permanent faults 

and to prevent unserved load during scheduled 

interruption [4]. In [5] is presented a Pareto multi-

objective optimization to determine the amount and 

location of protective devices, minimizing both total costs 

and reliability indices such as SAIFI and SAIDI. Authors 

in [6] and [7] include Distributed Generation (DG) 

penetration on a loop feeder while achieving the optimal 

placement of reclosers. They minimize SAIFI and SAIDI 

applying Evolutionary Algorithms (EAs). 

This paper is organized as follows. Section II shows in 

detail the proposed approach for DS planning. Section III 

describes the formulation of objective functions and 

constraints of the problem. Section IV describes the 

optimization method. Section V shows the test system 

used and the numerical results obtained with the proposed 

methodology. Finally, Section VI presents the conclusions. 

II. PROPOSED APPROACH 
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To characterize a Multi-Stage Optimization Problem 

(MSOP), without loss of generality, let us consider the 

decision-making involved in the planning of DSs; 

primarily composed by topology outline, sizing of the 

protection system and placement of reclosers. Thus, this 

planning can be divided into two stages: i) Topology 

outline; and ii) Protection system shaping. In first, 

physical infrastructure of distribution feeder is designed in 

accordance to the geographical position of load points. 

Here, several elements with their main characteristics are 

selected in a reasonably basis, e.g., connection branches 

are chosen according to type of conductor, length, tower 

type, among others. Moreover, important elements such as 

substa- tions and DG power plants are also determined. In 

the second phase, protection system is designed on the 

selected network configuration resulted in the first stage. 

This decision-making considers the sizing of the 

protection system together with the efficient placement of 

protective devices toward the feeder reliability 

enhancement. In Fig. 1 the scheme characterizes the 

general process of a multi-stage decision making. 
 

 

Figure 1.  Flow diagram of multi-stage decision making. 

Moreover, the aforementioned optimization stages are 

usually developed in a multi-objective basis. In Fig. 2, the 

continuous lines represent the initial topology of a DS, 

while the dashed lines represent the connection 

alternatives for new load points. In the first stage, the 

possible new load nodes in a system can be connected to 

the substation through different routes, therefore, design 

of the DS network is a combinatorial problem with 

technical and economic constraints. Finally, we must 

consider the availability of primary energy resources to 

locate and size DGs. This availability limits the area and 

the nodes to which DG can be connected. 

In the second stage, the amount of protective devices in 

a DS can vary from any recloser to a few. Let us take two 

extreme hypothetical cases: 1) non branch has the 

capability to isolate a fault event; 2) each branch is able to 

isolate a fault event by the opening of a switch. If the 

reliability is the only objective of this decision-making 

problem, the ideal choice is the second case. Nevertheless, 

it is expected that a full reliable DS is likely to be very 

expensive, involving high costs that the Network Operator 

(NOp) is not willing to invest. Hence, the decision-making 

process must to be developed taking into account several 

objectives, such as high levels of reliability together with 

low costs. 

  

Figure 2.  Topology decision making. 

 

Figure 3.  Two objectives Pareto-front. 

The multi-objective optimization problem has n 

decision variables, M objective functions, as 

)](),...,(),([/=)(/ 21 xfxfxfminmaxxfminmax M
     (1) 

0))(),...,(),((=)(.. 21 xgxgxgxgts J
            (2) 

 0=))(),...,(),((=)( 21 xhxhxhxh K
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ii

L
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where the last set of constraints determines lower and 

upper bounds for each decision variable. Besides, the 

problem is described by inequality and equality 

constraints. 

As stated before, cascade optimization requires the 

outcome of a global optimum in each stage. Nevertheless, 

multi-objective optimization looks for compromises 

among objectives instead of finding a single solution. 

Therefore, the traditional optimality concept for a unique 

global optimal solution is improper to apply. Hence, we 

apply the optimality concept introduced by Vilfredo 

Pareto in 1896. In words, this notion can be defined as: if 

there is no feasible solution rather than *x


 which 

improves one objective function without impairing the 

rest, then *x


 is Pareto optimal. Formally, Coello et al. [8] 

define this notion as follows: a point *x


 is Pareto-

optimal if for every *x


 and }{1,2,...,= MM  either,  

)),(=( *xfxf mm


                        (5) 

or, there is at least one mM such that  

).(> *xfxf mm


                          (6) 
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In Pareto approaches there is a set of trade-off solutions 

instead of a unique solution. In Fig. 3 is shown a 

generalized Pareto-front when minimizing two objectives. 

In this case, we highlight five solutions; A is an extreme 

solution that completely favors objective 2, E is an 

extreme solution that outperforms objective 1, and C is the 

most balanced solution within the optimal set. 

In order to realize the cascade optimization, it would be 

possible to utilize every solution of the optimal set as an 

input of a subsequent stage. Nevertheless, although this 

process is less complex in comparison with the single 

solving process due to a more restricted search space, it is 

excessively time and resource consuming. In consequence, 

we propose the use of an efficient subset of solutions that 

compose the Pareto front, to function as inputs of the 

second stage in order to reduce complexity and 

optimization solving time. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.  Feasible search spaces for distinct alternatives to solve 
Multi-Stage and Multi-Objective Optimization Problems (MSMOOPs). 

a) Single solving with all decision-making variables. b) Cascade solving 
with all efficient solutions .c) Cascade solving with efficient solutions 

subset. 

Fig. 4 shows complexity (when exploring the search 

space) comparison among the different alternatives to 

solve a MSOP, stated hereinabove. Fig. 4a presents the 

feasible region when multi-stage decision making is 

realized with a single solving process that considers all 

required variables. Every solution in the feasible region 1 

(alongside inner solutions) is associated with a feasible 

search space of second stage. Let G  be the number of 

feasible solutions in first stage and P  the number of 

average feasible solutions in every second stage search 

space. The entire landscape of this alternative is defined 

by the product GP . On the other hand, Fig. 4b shows the 

feasible region when multi-stage decision making is 

developed applying cascade optimization and using each 

solution of the optimal set as an input of the subsequent 

stage. Every efficient solution in feasible region 1 (located 

in the edge) is associated with a feasible search space of 

second stage. Let Q  be the number of efficient solutions 

in first stage and P the number of average feasible 

solutions in every second stage search space. The entire 

landscape of this alternative is defined by the product QP . 

Since GQ  , then the entire search space in the second case 

is more delimited than the first case, scaled by the ratio 

GQ/ . Finally, Fig. 4c describes the feasible region when 

multi-stage decision making is developed applying 

sequential optimization and using an efficient subset of 

solutions as inputs of the successive stage. As the second 

alternative, each subset solution in feasible region 1 

(settled in the bound) is associated with a stage two 

feasible region. Let R  be the size of efficient solutions 

subset in first stage and P  the number of average feasible 

solutions in every second stage search space. The entire 

landscape of this alternative is defined by the product RP . 

Whereas GQR  , the entire search space in the proposed 

alternative is the less complex and more precise among 

the aforementioned alternatives. Here, the complexity of 

the search space is reduced by the ratio GR/ . 

 

(a) 

 

(b) 

Figure 5.  Pareto optimal sets. a) Second stage Pareto-fronts derived 
from first stage highlighted solutions. b) Prime-Pareto optimal set.  

Applying the cascade optimization with efficient 

solution subset to the front of Fig. 3, the final stage 

outputs a new Pareto-optimal set composed by better 

solutions, which are located at the left-lower area of the 
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first front of Fig. 5a. Willfully, we made highlighted 

solutions coincide with the intersection of both stages 

Pareto-fronts. To the right of these points it is presumable 

that solutions found in second stage will be worse than 

those of the first front. In consequence, it is necessary a 

new start point for second stage to find new better 

alternatives. It is essential to entirely cover the domain of 

the first front with the set of second fronts in order to 

maintain the objectives value range size. Besides, when 

meeting the above, the range expansion is likely to occur, 

a desirable effect for the decision maker. 

In Fig. 5b is shown the Pareto-optimal set when 

filtering dominated alternatives of both realized stages. 

This Pareto- front is what we call a definitive set of 

efficient solutions because is the output of the last 

optimization stage. Since this set is the result of 

combining different fronts, we denominate it as the Prime-

Pareto optimal set. 

To obtain the Prime-Pareto optimal set for a multi-stage 

and multi-objective optimization problem, it is necessary 

to follow the scheme determined in Fig. 6. Here, we 

characterize the procedure for the first stage and a 

generalized form for subsequent stages. 

 

Figure 6.  Flow diagram to solve MSMOP with Prime-Pareto approach. 

III. FORMULATION 

A. First Stage: Topology Outline 

The majority of DSs operates with a radial topology for 

various technical reasons. Among the most important are, 

ease protections coordination, and reduction of DS short 

circuit currents. The conditions to obtain a DS network 

without branches that form a meshed grid, are based on 

[9]. To guarantee radiality conditions we define: 

,
0

,),(1
=


 

else

ijconnectedisjibranchtheif
x

b

ij
   (7) 

where, 
b  is the total branches set and 

ijx  determines the 

subsets of 
b , which are 

ab  and 
ob . The subset 

ab  

contains the active network branches needed to connect 

demand nodes and 
ob  contains the open lines to ensure 

the DS radiality. The radiality conditions are: 

,= i
i

DG
i

sbji

ab
ji

ij

ab
ij

dppff  

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,),(, abijijij jixff 


                (9) 

,)(0,=0 sb
i

sb
i

sb ipp 


           (10) 

,)(0,=0 dg
i

dg
i

dg ipp 


           (11) 

1,=  
ndxij

ab
ij

                    (12) 

where, 
ijf  is the active power flow between nodes i  and 

j , 
i

sbp  and 
i

dgp  are the active power supplied by the 

substation and distributed generators at node i , 

respectively. The active power demand at node i  is 

denoted by di. The maximum active power limit of 

branches and substations are denoted by 
ijf


 and 
i

sbp


, 

respectively, and the number of nodes in the DS is 

denoted by |=| nnd  . Therefore, as proved in [3], the 

combination of the power balance constraint (8) and radial 

constraint (12), results that each load node is connected by 

a single path to the substation node. 

Dijkstra’s and Prim’s algorithms, from graph theory, 

are used as auxiliary tools to conserve feasibility of 

individuals and ensure the radiality constraint fulfillment, 

using several expansion trees to find the efficient topology 

of a DS. 

For the first stage evaluation, we consider two 

objective functions: minimizing the investment cost of 

DS expansion plus the costs of energy losses )(1 xf ; and 

minimization of the expected value of non-supplied 

energy due to elements connectivity )(2 xf . In 

accordance with Eqs. (1)-(4), the multi-objective 

optimization of expansion and operation system planning 

is characterized by the following decision-making 

problem:  

),,(Costs),,,(ENSmin dgsblfsdgsbl XXXXXX   (13) 

0,),,(ENSs.t. dgsbl XXX               (14) 

where,  

p
Et

t

edgfs C
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




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here 
lX , 

sbX  and 
dgX  are decision variables to install 

lines, substations and DG power plants. We evaluate the 

total cost of DS expansion and reconfiguration with an 

annualization factor, including operational costs [10]. 
dgC  

is the cost of DG install, 
eC  is the installed cost of lines 

and substations, and 
p

EC  is the losses annual cost. The 

elements lifetime and the discount rate are denoted by t  

and r , respectively. Moreover, i

jACIT  is the average 

customer interruption time of the load point j  when i  

protection devices are installed in the feeder, i

jPd  and 

i

jPs  are, respectively, the average amount of power 

disconnected and power shed at load point j  when i  

protection devices are installed in the feeder, w  is the 

total number of load points in the feeder. In Eq. (16) the 

ENS is related to the average time of interruption for 

every user in the grid, and to shedding or disconnection of 

loads. 

We assume the basic protection scheme of a typical 

radial distribution network with a main breaker and the 

absence of isolators on the main feeder. Considering DG 

as an active power source with no reactive power, leads to 

a potential increase in investment costs or the incorrect 

placement of DG due to poor selection of elements 

capacity of DS [11]. Therefore, we included the 

generation capacity limits to evaluate the impacts of 

power injections in DS. 

The limits on the voltage profile ),( maxmin

ii VV  are 

defined by regulatory standards, and the thermal 

constraints )( max

ijI  by elements capacities,  

,maxmin

niii iVVV                (17) 

.),(max

bijij jiII                   (18) 

B. Second Stage: Shaping of Protection System 

From a technical perspective, reliability indices in a 

distribution feeder are improved by using protective 

devices such as fuses and reclosers. The acquisition of 

these devices involves an economic cost. In consequence, 

the sizing of these schemes must consider the 

minimization of investment at the same time that 

reliability of the system is maximized. In this sense, the 

amount and location of devices in the system is a critical 

factor to be taken into account in order to accomplish 

preceding objectives. 

Concomitant with Eqs. (1)-(4), the multi-objective 

optimization of a recloser based protection system 

planning is characterized by the following decision-

making problem:  

)(Costs),(ENSmin XX ss
                 (19) 

0,)(ENSs.t. X                         (20) 

{0,1}ix                                 (21) 

where,  
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
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For the network operator, reliability benefits arise when 

the Non-Supplied Energy (ENS) is decreased in feeders. 

To achieve this reduction it is necessary the use of 

reclosers, which are intended to be placed efficiently. A 

distribution system yields reliability indicators 

concomitant with failure and repair rates of the network 

elements, and the infrastructure topology. Moreover, it is 

plausible that the addition of a protective device 

encompasses the ENS improvement. Considered costs of 

reclosers are normalized with an annualization factor and 

include investment as operational costs. 

Here, the only constraint is related to the physical and 

theoretical attainable values of ENS. Moreover, decision 

variables of the problem formulated above are the 

existence (or not existence) of a protective device in a 

branch. Thus, a "1" indicates the presence of a recloser on 

the associated line-segment; meanwhile, a "0" indicates an 

unprotected branch. The length of the decision-variables 

vector regards to the extent of branches prone of recloser 

installation while the index indicates an explicit branch. 

IV. EVOLUTIONARY ALGORITHM 

Algorithm 1 Fast non-dominated sort 

  foreach Pp  do 

        0=,= pp nS   

        foreach Pq  do 

              if qp   then 

                    }{= qSS pp  ; 

              else if pq   then 

                    1= pp nn ; 

       end  

        if 0=pn  then 

              1,=rankp  p11 = FF ; 

        1=i  

        while iF  do 

              Q ;    

              foreach 
ip F do 

                    foreach 
pSq  do 

                          1= qq nn  

                          if  0=qn  then 

                              qQQiqrank  =1,=  

                     end 

              end 

              Qii i =1,= F  ; 

        end 

  end 
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Nondominated sorting genetic algorithm II (NSGA-II) 

is a multiobjective evolutionary algorithm (MOEA) which 

was proposed by Deb et al. [12]. NSGA-II shows some 

advantages in comparison with other MOEAs (e.g., 

Pareto-achieved evolution strategy and strength-Pareto 

EA). In this way, NSGA-II allows to find a diverse set of 

solutions, converging near the true Pareto-optimal set. 

Based on [12], we describe the NSGA-II algorithm in 

three parts: 1) Fast nondominated sorting approach; 2) 

Diversity preservation; and 3) Main loop. 

The fast nondominated sorting approach allows to 

identify all individuals on the nondominated fronts. The 

Algorithm 1 outlines the steps of fast nondominated 

sorting. 

First, for each solution pP, it is calculated the number 

of solutions (np) which dominate P, also it is conformed 

the set of solutions Sp that the solution P dominates. Now, 

for each solution P with np =0, the algorithm visits each 

member q Sp and reduce its domination count by one. 

Then, if for any q the domination count becomes zero, it is 

located in a list 
Q

 conforming the second dominated front. 

Finally, this process continues until all fronts are 

identified. 
 

Algorithm 2 Crowding distance assignment 

  Designate the size of the analyzed front: |=| Il   

  foreach  i  do 

        set  0=][ distanceiI  

  end 

  foreach objective m  do 

         ),(sort= mII ; 

         =][=[1] distancedistance lII ; 

         for 1)(to2= li  do 

                
minmaxdistancedistance

1][1][
][=][

mm ff

mimi
ii






II
II  

         end 

  end   
 

Second, the diversity preservation refers to maintain a 

good spread of solutions. To achieve this, it is defined two 

concepts: i) crowding distance; and ii) crowded 

comparison operator. Crowding distance serves as an 

estimate of nearness of neighbor solutions, which is useful 

to choose individuals among front members. The 

Algorithm 2 outlines the crowding distance computation 

of all solutions in a nondominated set I , where mi][I  refers 

to the m th objective function of the individual Ii , the 

parameters max

mf  and min

mf  are the maximum and 

minimum values of the m th objective function. On the 

other hand, the crowded comparison operator (
n ) guides 

the selection process at the various stages of the algorithm 

towards a uniformly spread-out Pareto-optimal front. The 

operator is defined by ji n  if )<( rankrank ji  or 

))>(-and-)=(( distancedistancerankrank jiji where 
ranki  is the 

nondomination rank and 
distancei  is the crowding distance. 

Finally, the NSGA-II main loop is described. NSGA-II 

starts creating an initial population 
0P , which is sorted 

based on the nondomination. In this way, to each solution 

is assigned a fitness equal to its nondomination level (1 is 

the best level). Then, binary tournament selection, 

recombination, and mutation operators, are used to create 

an offspring population 
0Q  with N  individuals. Next, the 

Algorithm 3 outlines the main loop steps of NSGA-II. 

First, a combined population 
ttt QPR =  is created. Then, 

the population 
tR  is sorted according to nondomination. 

Now, solutions belonging to the best nondominated set 
1F  

are the best solutions in the combined population and are 

prioritized above than any other solution in the combined 

population. If the size of 
1F  is smaller than N , we choose 

all population members 
1F and the remaining members are 

chosen from subsequent nondominated fronts in the order 

of their ranking. This procedure is continued until the size 

of 
1tP  is equal to N . However, the individuals of last 

front are chosen using the crowded comparison operator. 

Finally, the new population 
1tP  is used for selection, 

crossover, and mutation (Make-new-population (
1tP )) to 

create a new population 
1tQ .   

 

Algorithm 3 NSGA-II Algorithm 

ttt QPR = ; 

)(sortednondominatFast= tRF  

 =1tP  and 1=i ; 

 repeat 

        Crowding-distance-assignment  
iF ; 

        
itt PR F 11 =  ,   1= ii ; 

  until NP it  |||| 1 F ; 

  Sort(
ni ,F ); 

  |)|(:1= 111   titt PNPP F ; 

)(populationnewMake= 11   tt PQ  

 1= tt ; 

V. CASE STUDY 

The radial network used for this analysis is the 33-

nodes radial DS shown in Fig. 7. The main characteristics 

of the system are: 12.66 kV voltage profile, 32 line-

segments, 5 tie-lines, and a total demand of 3715 kW plus 

2300 kVAR. We refer the reader to [13] for more details 

on the 33-nodes radial DS modeling. 

 

Figure 7.  33-bus radial distribution system. 
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A. Stage 1 Results 

In the first stage, the proposed method provides a set of 

Pareto efficient solutions (Fig. 8) that represent the 

evolution of the non-dominated solutions obtained with 

the NSGA-II algorithm. Five solutions are displayed 

(panels S1 to S5) to illustrate the properties of the DS, 

with different combinations of the proposed alternatives in 

each solution. The main features of these solutions are 

shown in Table I. 

 

Figure 8.  First stage Pareto-front. 

TABLE I.  OPTIMAL SOLUTION IN THE STAGE 1. 

Solution 
Lines     

switched out 

Total 

kW 

losses 

Worst 

voltage 

GD  

capacity 

Base case 33-34-35-36-37 211.22 0.9038 0 

Sol. S1 7-9-14-25-32 140 0.932 0 

Sol. S2 9-14-26-32-33 96 0.967 G2 1MW 

Sol. S3 7-10-14-27-36 102 0.955 G4 1.25MW 

Sol. S4 6-10-1427-36 186 0.935 G1 2MW 

Sol. S5 6-11-26-34-36 220 0.964 G2/G4 2.5MW 

 

The topology optimization, in the first stage, is strongly 

influenced by the power losses when DG is installed. The 

Pareto front show that the great leaps in the expansion and 

reconfiguration costs are mainly due to DG installation. 

Despite optimizing the location and size of DG, a high 

percentage of penetration, as seen in the solution S5, 

increases the losses level due to the restricted feeder 

capacity. However, the ENS reduction is not significant in 

this stage because of the adopted protection scheme for 

the network design in normal operation. The ENS is 

obtained by connectivity analysis, therefore, the algorithm 

refers to topology optimization uniquely when active 

elements are installed, e.g., DG. 

B. Stage 2 Results 

Based on the first stage results and formulation 

presented earlier, the multi-objective optimization of 

protection system, for each starting topology, is applied 

through the NSGA-II. As expected, a new set of better 

solution arises by minimizing ENS when reclosers are 

efficiently placed. These results are presented in Fig. 9. 

Here, a bunch of four fronts is attained in order to cover 

the entire domain of the main front obtained in the first 

stage. 

From the simulations outcome, it is verified a 

significant premise associated to the reliability of the 

system. That is, the higher the number of protective 

devices, the higher the system reliability. Suitably placed 

reclosers boost the operating time of a power plant 

whenever faults arise in any part of the system. 

Henceforth, the overall output and operation time of a DG 

power plant increase as the number of protective devices 

proliferates. 

In Table II are presented in detail the most common 

efficient places of reclosers for each obtained optimal set. 

A number of branches stand as critical points to 

ameliorate the system reliability. Particularly, the line-

segments 2, 18, and 37 become decisive locations since 

the addition of a recloser in any of these positions increase 

the system reliability considerably. Finally, by combining 

the bunch of second stage Pareto-fronts, it is derived the 

Prime-Pareto optimal set presented in the right side of Fig. 

9, which provides better solutions than the reached in the 

first stage. 

VI. CONCLUDING REMARKS 

A novel approach to solve multi-stage and multi-

objective optimization problems is proposed. The 

methodology is used to determine the efficient planning of 

an electrical distribution system. This planning considers 

infrastructure outlining, and protection system shaping. 

The approach relies on Pareto optimality concepts and 

evolutionary algorithms. The 33-nodes radial feeder is 

successfully tested with NSGA-II, programmed in 

DigSilent software. An initial Pareto front is achieved 

with infrastructure outlining. The expansion and 

reconfiguration problem of DSs require the determination 

of branches. We use restrictions and graph theory 

techniques to keep radiality of the system while peak 

demand is supplied. 

 

Figure 9.  Second stage Pareto-fronts and Prime-Pareto optimal set. 
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TABLE II.  EFFICIENT PLACEMENT RESULTS USING GENETIC 

ALGORITHM. 

Pareto front Starting point Recloser positions (branches) 

Front 1 Sol. S1 2-18-34-35-37 

Front 2 Sol. S2 5-18-34-35-37 

Front 3 Sol. S3 2-18-22-33-37 

Front 4 Sol. S4 2-18-33-35-37 
 

The methodology to determine the amount of reclosers 

and their efficient location within a feeder, include 

reliability assessments to characterize ENS. On the other 

hand, investment and operation costs are combined into a 

single objective that conflict with reliability performance 

objective. This behavior befit with a multi-objective 

optimization problem that may be solved with MOEA ś. 

Simulation results show the importance of both 

topology and protection systems planning to enhance the 

reliability in radial distribution feeders. The proposed 

solving scheme leads to the Prime-Pareto optimal set 

concept which may become a generalized method to 

elucidate multi-stage and multi-objective optimization 

problems. 
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