
Energy-Efficient Fault-Tolerant Scheduling

Approach for Embedded Real Time Systems

Chafik Arar, Hamoudi Kalla, Salim Kalla, and Sonia Sabrina Bendib
Department of Computer Science, University of Banta, Algeria

Email: {Chafik.arar, hamoudi.kalla}@gmail.com, {salim.kalla,Bendib.SS}@univ-batna.dz

Abstract—In this paper, we propose a fault-tolerant

scheduling heuristic that achieves low energy consumption

and high reliability efficiency. Our scheduling algorithm is

dedicated to multi-bus heterogeneous architectures, which

take as input a given system description and a given fault

hypothesis. It is based on active redundancy to mask a fixed

number k of failures supported in the system, so that there

is no need for detecting and handling such failures. In order

to maximize the system’s reliability, the replicas of each

operation are scheduled on different reliable processors.

Finally, we show with an example that our approach can

maximize reliability and reduce energy consumption when

using active redundancy.

Index Terms—embedded systems, real time systems,

scheduling, energy consumption, reliability, active

redundancy, multi-bus

I. INTRODUCTION

Today, embedded real-time systems invade many

sectors of human activity, such as transportation and

management, energy production, robotics, and

telecommunication. The progresses achieved in

electronics and data processing improves the

performances of these systems. As a result, the new

systems are increasingly small and fast, but also more

complex and critical, and thus more sensitive to faults.

The presence of some faults in these systems, accidental

(design, interaction,…) as well as intentional (human,

virus, …), are inevitable. Due to catastrophic

consequences (human, ecological, and/or financial

disasters) that could involve a fault, these systems must

be fault-tolerant [1]–[3]. This is why fault-tolerant

techniques are necessary to make sure that the system

continues to deliver a correct service in spite of faults

[4]–[9].

A fault can affect either the hardware or the software

of the system. Thanks to formal validation techniques

(e.g., model-checking, theorem proving, abstract

interpretation, test case generation,…) a lot of software

faults can be prevented. Although software faults are still

an important issue, we chose to concentrate on hardware

faults. More particularly, we consider only processors

faults in systems with distributed architectures.

Furthermore, as we are targeting embedded systems with

limited resources (for reasons of weight, encumbrance,

Manuscript received July 1, 2012; revised September 10, 2013.

energy consumption, or price constraints), we investigate

only software solutions. Several hardware fault-tolerant

approaches [10]–[12] have been proposed in the literature.

Because there are several methods of connecting

processors (e.g., point-to-point, multipoint

connections …), each of these approaches target a

specific type of architecture. For instance [11] targets

distributed architectures with point-to-point connections,

while [12] targets distributed architectures with CAN

(Controller Area Network) buses. A bus is a multipoint

connection characterized by a physical medium that

connects all the processors of the architecture. Buses,

with broadcast or non-broadcast communications, are

widely used in several areas, such as automotive or

robotics. In the broadcast case, that we address in this

document, each communication is received by all the

processors, while in the non-broadcast case, only the

destination processor receives the communication.

This document addresses hardware fault-tolerant

approaches based on scheduling algorithms, to tolerate

processors faults in distributed architectures. The

approach that we propose is our most recent work for

building fault-tolerant distributed embedded real-time

systems. Prior results have been published in [13]–[17].

In this paper, we are interested in approaches based on

scheduling algorithms that maximize reliability and

reduce energy consumption when using active

redundancy to tolerate processors.

The paper is organized as follows. Section II describes

the system model and states the faults assumptions.

Section III presents our approach for providing fault-

tolerance. Section IV shows with an example how our

approach can maximize reliability and reduce energy

consumption when using active redundancy. Finally,

Section V concludes the paper and proposes future

research directions.

II. MODELS

A. Algorithm Models

The algorithm is modeled as a data-flow graph, called

algorithm graph and noted ALG. Each vertex of ALG is

an operation (task) and each edge is a data-dependence. A

data-dependence, noted by →, corresponds to a data

transfer between a producer operation and a consumer

operation. o1→o2 means that o1 is a predecessor of o2,

274

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing
doi: 10.12720/ijoee.1.4.274-278

and o2 is a successor of o1. Operations with no

predecessor (resp. no successor) are the input interfaces

(resp. output), handling the events produced by the

sensors (resp. actuators). Fig. 1 presents an example of an

algorithm graph, with seven operations v1, v2, v3, v4, v5,

v6 and v7.

Figure 1. Algorithm graph.

B. Architecture Model

The architecture is modeled by a non-directed graph,

noted ARC, where each node is a processor, and each

edge is a bus. Classically, a processor is made of one

computation unit, one local memory, and one or more

communication units, each connected to one

communication link. Communication units execute data

transfers. We assume that the architecture is

heterogeneous and fully connected. Fig. 2 is an example

of ARC, with four processors P1, P2, P3 and P4, and

three buses B1, B2 and B3.

Figure 2. Architecture graph.

C. Distribution, Execution Time and Real-Time

Constraints

The distribution constraints are the hardware

preferences. They define the exclusion relationship

between some hardware and some software components.

As the architecture is heterogeneous, the execution time

of each operation can vary from one processor to another.

The temporal constraints define the worst execution times

and the worst communication times respectively of the

tasks and data communication on the architectures

components (processors and communication bus).

Our real-time system is based on cyclic executive; this

means that a fixed schedule of the operations of ALG is

executed cyclically on ARC at a fixed rate. This schedule

must satisfy one real-time constraint which is the length

of the schedule. The temporal constraints define the worst

execution times and the worst communication times

respectively of the tasks and data communication on the

architectures components (processors and communication

bus). We associate to each operation oi a worst case

execution time (WCET) on each processor pj of ARC,

noted Exe(oi; pj). Also, we associate to each data

dependency dpdi a worst case transmission time (WCTT)

on each bus bj of the architecture, noted Exe(dpdi; bj).

D. Fault Model

We assume only hardware components failures and we

assume that the algorithm is correct W.R.T. its

specification, i.e., it has been formally validated, for

instance with model checking and/or theorem proving

tools. We consider only transient processors faults.

Transient faults, which persist for a short duration, are

significantly more frequent than other faults in systems

[18]. Permanent faults are a particular case of transient

faults. We assume that at most k processors faults can

arise in the system, and that the architecture includes

more than k processors.

III. THE PROPOSED APPROACH

In this section, we first discuss the basic principles

used in our solution, based on scheduling algorithms.

Then, we describe in details our scheduling algorithm.

A. Principles

Active redundancy: in order to tolerate upto k arbitrary

processors faults, our solution is based on active

redundancy approach. The advantage of the active

redundancy of operations is that the obtained schedule is

static; in particular, there is no need for complex on-line

re-scheduling of the operations that were executed on a

processor when the latter fails; also, it can be proved that

the schedule meets a required real-time constraint, both in

the absence and in the presence of faults. In many

embedded systems, this is mandatory. To tolerate upto k

processors faults, each operation o of ALG is actively

replicated on k+1 processors of ARC (see Fig. 3 and Fig.

4). We assume that all values returned by the k+1 replicas

of any operation o of ALG are identical.

Figure 3. ALG with two operations.

Figure 4. Active redundancy.

Voltage, frequency, and energy consumption: the

maximum supply voltage is noted Vmax and the

corresponding highest operating frequency is noted fmax.

For each operation, its WCET assumes that the processor

operates at fmax and Vmax (and similarly for the WCCT

of the data-dependencies). Because the circuit delay is

almost linearly related to 1/V, there is a linear

relationship between the supply voltage V and the

275

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

operating frequency f. In the sequel, we will assume that

the operating frequencies are normalized, that is, fmax=1

and any other frequency f is in the interval (0,1).

Accordingly, the execution time of the operation or data-

dependency X placed onto the hardware component C (be

it a processor or a communication link) running at

frequency f (taken as a scaling factor) is:

Exe(X, C, f) = Exe(X, C) / f (1)

Concerning the power consumption, we follow the

model of Zhu et al. [19]. For a single operation placed

onto a single processor, the power consumption P is:

P = Ps + h(Pind + Pd) (2)

Pd = Cef V
2
 f (3)

where Ps is the static power (power to maintain basic

circuits and to keep the clock running), h is equal to 1

when the circuit is active and 0 when it is inactive, Pind is

the frequency independent active power (the power

portion that is independent of the voltage and the

frequency; it becomes 0 when the system is put to sleep,

but the cost of doing so is very expensive), Pd is the

frequency dependent active power (the processor

dynamic power and any power that depends on the

voltage or the frequency), Cef is the switch capacitance, V

is the supply voltage, and f is the operating frequency.

For processors, this model is widely accepted for average

size applications, where Cef can be assumed to be

constant for the whole application.

For a multiprocessor schedule S, we cannot apply

directly equation (3). Instead, we must compute the total

energy E(S) consumed by S, and then divide by the

schedule length L(S):

P(S) = E(S) / L(S) (4)

We compute E(S) by summing the contribution of each

processor, depending on the voltage and frequency of

each operation placed onto it. On the processor pi, the

energy consumed by each operation is the product of the

active power P
i
 ind + P

i
d by its execution time.

In our approach, as k+1 replicas of each operation are

scheduled actively on k+1 distinct processors, the energy

consumed by the system is maximal. In order to reduce

energy consumption, we propose to execute the k+1

replicas of an operation with different frequencies f. As

all the k+1 replicas of an operation may have different

end execution time (see Fig. 4 for the replicas o2.1 and

o2.2), we choose to align the execution time of all the

replica by changing the frequency f of each replica (see

Fig. 5).

Figure 5. Changing the frequency of o2.1

Reliability: in order to compute reliability R, we

propose to use the Global System Failure Rate per time

unit (GSFR) function that we have proposed in [15]. The

GSFR is the failure rate per time unit of the obtained

multiprocessor schedule. Using the GSFR is very

satisfactory in the area of periodically executed schedules.

This is the case in most real-time embedded systems,

which are periodically sampled systems. In such cases,

applying brutally the exponential reliability model yields

very low reliabilities due to very long execution times

(the same remark applies also to very long schedules).

Hence, one has to compute beforehand the desired

reliability of a single iteration from the global reliability

of the system during its full mission; but this computation

depends on the total duration of the mission (which is

known) and on the duration of one single iteration (which

may not be known because it depends on the length of the

schedule under construction). In contrast, the GSFR

remains constant during the whole system’s mission: the

GSFR during a single iteration is by construction

identical to the GSFR during the whole mission.

Our fault tolerance heuristic is GSFR-based to control

precisely the scheduling of each replica of an operation

from the beginning to the end of the schedule.

The GSFR of scheduling an operation oi, noted /\(Sn),

is computed by the following equation:

/\(Sn) = − log R(Sn) / U(Sn) (5)

where Sn is the static schedule at step n of the algorithm,

and U(Sn) is the total utilization of the processors.

B. The Scheduling Algorithm

The principles of our approach are implemented by a

scheduling algorithm, called Energy Fault Tolerant

Heuristic (EFTH). It is a greedy list scheduling heuristic,

which schedules one operation at each step (n). It

generates a distributed static schedule of a given

algorithm ALG onto a given architecture ARC, which

minimizes the system's run-time, and tolerates upto k

processors faults, with respect to the real-time and the

distribution constraints. At each step of the greedy list

scheduling heuristic, the pressure schedule function [15]

is used as a cost function to select the best operation to be

scheduled.

The algorithm of EFTH is divided into four steps:

initialization step, selection step, a distribution and

scheduling step, and finally an update step. The

superscript number in parentheses refers to the steps of

the heuristic, e.g., O
n
sched. The EFTH scheduling

algorithm is described below:

Algorithm EFTH:

input: ALG, ARC, number of processors failures (k);

output: a fault-tolerant schedule;

Initialize the lists of candidate and scheduled operations:

n := 0;

O
(0)

cand := { o O | pred(o) = \emptyset};

O
(0)

sched := ;

while O
(n)

cand do

276

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

 For each candidate operation ocand, compute its

schedule pressure
(n)

 and GSFR on each

processor pk.

(n)

(oi,pj) = S
(n)

oi,pj + S
(n)

oi - R
n-1

(Sn) = - log R(Sn) / U(Sn)

 For each candidate operation ocand, select k+1 best

processors Pbest which minimizes
(n)

 and GSFR.

 Select the most urgent candidate operation ourgent

between all o
i
cand of O

(n)
cand.

 Schedule the k replicas of ourgent on Pbest;

 Align all the replicas of ourgent by changing

frequencies;

 Update the lists of candidate and scheduled

operations:

 O
(n)

sched := O
(n-1)

sched { ourgent };

 O
(n+1)

cand := O
(n)

cand - { ourgent } {o' succ(ourgent) |

 pred(o') O
(n)

sched };

 n := n + 1;

end while

end

The set of candidate operations Ocand is initialized as

the operations without predecessor. The set of scheduled

operations Osched is initially empty. In the selection step, a

k+1 processors are selected among all the processor of

ARC to schedule each replica of an operation. The

selection rule is based schedule pressure and GSFR. The

scheduled operation obest is removed from Ocand, and the

operations of ALG which have all their predecessors in

the new set of scheduled operations are added to this set.

In the schedule pressure function, S
(n)

oi, pj compute the

earliest time at which operation oi can start its execution

on processor pj. The R
(n-1)

 is the critical path length at

step (n-1) (that is, before scheduling oi).

IV. EXAMPLE

We have applied the EFTH heuristic to an example of

an algorithm graph and an architecture graph composed

of four processors and four buses. The algorithm graph is

presented in Fig. 6. The failure rates of the processors are

respectively 10
-5

, 10
-5

, 10
-6

 and 10
-6

.

Figure 6. Algorithm graph.

Fig. 7 shows the non-fault-tolerant schedule produced

for our example with a basic scheduling heuristic. (for

instance the one of SynDEx). SynDEx is a tool for

optimizing the implementation of real-time embedded

applications on multicomponent architecture.

Figure 7. Schedule generated by SynDEx.

Fig. 8 shows the fault-tolerant schedule produced for

our example with a EFTH scheduling heuristic without

changing frequencies. The schedule length generated by

this heuristic is 18.6. The GSFR of the non-reliable

schedule is equal to 0.0000264. The energy E is equal to

32.3.

Fig. 9 shows the fault-tolerant schedule produced for

our example with a EFTH scheduling heuristic. The

schedule length generated by this heuristic is 25.9. The

GSFR of the non-reliable schedule is equal to 0.0000251.

The energy E is equal to 24.75.

Figure 8. EFTH without changing frequencies

Figure 9. A schedule generated by EFTH

V. CONCLUSION

We have proposed in this paper a solution to tolerate

several processors faults in distributed heterogeneous

architectures with multiple-bus topology. The proposed

solution, based on active redundancy, is a list scheduling

heuristic called EFTH. It generates automatically a

277

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

distributed static schedule of a given algorithm onto a

given architecture, which minimizes the system's run-

time, and tolerates upto k processors faults, with respect

to real-time and distribution constraints. The scheduling

strategy based on variable frequency minimizes energy

consumption. Currently, we are working on a new

solution to take into account communication failures into

account.

REFERENCES

[1] A. Avizienis, “Dependable systems of the future: What is still

needed?” in Proc. IFIP World Computer Congress, 2004, pp. 79-
90.

[2] A. Avizienis, J. C. Laprie, and B. Randell, “Dependability and its

threats: A taxonomy,” in Proc. IFIP World Computer Congress,

2004, pp. 91-120.

[3] N. Suri and K. Ramamritham, “Editorial: Special section on
dependable real-time systems,” IEEE Trans. on Parallel and

Distributed Systems, vol. 10, no. 6, pp. 529-531, June 1999.
[4] A. Avizienis, “Design of fault-tolerant computers,” in Proc. Fall

Joint Computer Conference, November 1967, pp. 733-743.

[5] A. Burns and A. Wellings, Real-Time Systems and Programming
Languages, Addison-Wesley, 1997.

[6] P. Jalote, Fault-Tolerance in Distributed Systems, Prentice Hall,
New Jersey, 1994.

[7] J. C. C. Laprie, A. Avizienis, and H. Kopetz, Dependability: Basic

Concepts and Terminology, New York: Springer-Verlag, 1992.
[8] N. Suri and K. Ramamritham, “Editorial: Special section on

dependable real-time systems,” IEEE Trans. on Parallel and
Distributed Systems, vol. 10, no. 6, pp. 529–531, June 1999.

[9] W. Torres-Pomales, “Software fault-tolerance: A tutorial,”

National Aeronautics and Space Administration, Technical Report,
October 2000.

[10] K. P. Gummadi, M. J. Pradeep, and C. S. Ram Murthy, “An
efficient primary-segmented backup scheme for dependable real-

time communication in multihop networks,” IEEE/ACM Trans. on

Networking, vol. 11. no. 1, pp. 81-94, February 2003.
[11] X. Qin, H. Jiang, and D. R. Swanson, “An efficient fault-tolerant

scheduling algorithm for real-time tasks with precedence
constraints in heterogeneous systems,” in Proc. International

Conference on Parallel Processing, Canada, August 2002, pp.

360-386.
[12] J. Rufino, “Dual-media redundancy mechanisms for can,”

Technical Report, Center for Computer Systems and Telematics,
Portugal, January 1997.

[13] I. Assayad, A. Girault, and H. Kalla, “Tradeoff exploration

between reliability, power consumption, and execution time for
embedded systems, the TSH tricriteria scheduling heuristic,”

International Journal on Software Tools for Technology Transfer,
vol. 15, no. 3, pp. 229-245, June 2013.

[14] I. Assayad, A. Girault, and H. Kalla, “Tradeoff exploration

between reliability, power consumption, and execution time,” in
Proc. International Conference on Computer Safety, Reliability

and Security, Naples, Italy, September 2011, pp. 437-451.

[15] A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics
providing a guaranteed global system failure rate,” IEEE/ACM

Trans. on Dependable and Secure Computing, vol. 6, no. 4, pp.

241-254, October 2009.
[16] M. Bachir and H. Kalla, “A fault tolerant scheduling heuristics for

distributed real time embedded systems,” presented at
International Conference on Systems and Information Processing,

Guelma, Algeria, May 2013.

[17] I. Assayad, A. Girault, and H. Kalla, “Scheduling of real-time and
reliable embedded systems under reliability and power

constraints,” presented at International Conference on Complex
Systems, Agadir, Morocco, November 2012.

[18] M. Pizza, L. Strigini, A. Bondavalli, and F. Di Giandomenico,

“Optimal discrimination between transient and permanent faults,”
in Proc. 3rd IEEE High Assurance System Engineering

Symposium, Bethesda, USA, 1998, pp. 214-223.
[19] D. Zhu, R. Melhem, D. Mosse, and E. Elnozahy, “Analysis of an

energy efficient optimistic TMR scheme,” in Proc. International

Conference on Parallel and Distributed Systems, Newport Beach,
USA, July 2004, pp. 559-568.

Chafik Arar received the Master degree in Computer

Science from the University of Batna (Algeria) in 2005.
He is currently a PhD candidate with Computer Science

Department in the same university. His research topic is

reliability and communication fault tolerance for real-
time distributed embedded systems.

Hamoudi Kalla received the PhD degree from the

National Polytechnic Institute of Grenoble in 2004.
From 2005 to 2006, he was a postdoctoral fellow at the

French National Institute for Research in Computer

Science and Control (INRIA) in the ESPRESSO Project

Team, Rennes. He is currently an assistant professor in

the REDS Team, Department of Computer Science, University of Batna,
Algeria. His current research area focuses on developing reliability and

fault tolerance techniques for distributed real-time embedded systems

and on the formal verification of embedded-system-based intellectual
property (IP) components.

Salim Kalla received the Master degree in Computer

Science from Orleans University (France) in 2002. He is
currently an assistant professor and a PhD candidate

with Computer Science Department, University of Batna,
Algeria. His research topic is scheduling and fault

tolerance for critical real-time and Distributed embedded

systems.

Sonia Sabrina Bendib received the Master degree in

Computer Science from the University of Batna. She is
currently an assistant professor and a PhD candidate

with Computer Science Department in the same
university. Her special fields of interest include Bi-

criteria Scheduling Algorithms, reliability and fault

tolerance in real-time embedded systems.

278

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

http://www.informatik.uni-trier.de/~ley/pers/hd/a/Assayad:Ismail.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Girault:Alain.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Girault:Alain.html

