
Supervision of Plug-in Electric Vehicles 

Connected to the Electric Distribution Grids 
 

Siyamak Sarabi and Laid Kefsi 
IFP Energies Nouvelles/Electrical Engineering Department, Rueil Malmaison, France 

Email: {siyamak.sarabi-jeiranbolaghi, laid.kefsi}@ifpen.fr 

 

Asma Merdassi and Benoit Robyns 
Laboratory of Electrical Engineering and Power Electronics (L2EP)/Power system department, Lille, France 

Email: {asma.merdassi, benoit.robyns}@hei.fr 

 

 

 
Abstract—In recent years, automobile industries focus on 

the electrification and hybridization of the vehicle’s 

production. The number of Plug in Electric Vehicles (PEV) 

and Plug in Hybrid Electric Vehicles (PHEV) are 

significantly increasing through the next years. These raises 

impose negative impacts on the electrical power grids. In 

this study, a supervision system is proposed with the aim of 

reducing the power losses and voltage profile improvement, 

thanks to a dynamic programming optimization algorithm. 

V2G (Vehicle to Grid) technology is introduced as benefits 

of vehicle electrification for electrical distribution grids.  

 

Index Terms—vehicle to grid (V2G), distribution network, 

PHEV, PEV, dynamic programming (DP), supervision 

system operator (SSO) 

 

I. INTRODUCTION 

Fossil fuels source’s limitation and global warming 

caused by greenhouse gas emissions, are two major 

current issues of human beings. In France, 26 % of CO2 

emissions are dedicated to transportation sector, which is 

the biggest contributor compared to the energy supply by 

13 %, buildings by 18 % and industries and agricultures 

with 20 and a 21 % contribution [1]. According to that, 

for the sake of reducing fossil fuel dependency and CO2 

emission of transportation sector, automobile industries 

decided to converge to electrification and hybridization of 

the vehicle’s production. This strategy introduces new 

challenges for electricity suppliers, especially the 

electrical distribution operators. These problematic 

challenges consist of voltage deviation, power losses in 

charging periods, transformer and feeder overloads and 

power qualities reduction (e.g., voltage unbalance and 

harmonics increment) [2]. Some ideas such as 

coordinated charging (smart charging) have been 

introduced and studied with the aim of reducing the 

negative impacts [3]. It has been shown that coordinated 

charging of PHEVs and PEVs can lower power losses 

and voltage deviation by flattening out peak power and 

improve the load profile [2], [4]. Consequently, different 

charging scenarios have been studied to reduce the 
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impact of PHEVs on the electrical networks. One of these 

scenarios is defined as providing power to help balance 

loads by "valley filling" (charging at night when demand 

is low), and "peak shaving" (sending power back to the 

grid when demand is high) [5]. This definition will 

introduce new technology named V2G (Vehicle to grid). 

V2G is a service which facilitates the vehicles to 

charge/discharge from/to the grid and acts as a short-term 

energy storage system [6].  

The PHEVs can also act on the ancillary services and 

control markets. Ancillary services are those services 

necessary to support the transmission of electric power 

from producer to purchaser, such as frequency regulation, 

voltage profile control, system stability, overload 

prevention and system recovery after blackout [7] and [8]. 

The control market is a marketplace where an actor can 

be ready to provide back-up power (control power) and 

energy if something unpredicted would happen [7]. The 

services in which the PHEV could contribute have been 

introduced as regulation services (keeping voltage and 

frequency stable) spinning reserves or control market (i.e. 

meet sudden demands for power) [5]. 

The aim of this study is to reduce the impacts of 

PHEVs and PEVs on distribution networks. These 

impacts, such as minimizing the power losses, are 

introducing an optimization problem. 

To satisfy the objective, a methodology is proposed to 

estimate the charging percentage of the vehicle, and 

determine the available charging and discharging time 

slot during one day, which leads to the coordinated 

charging. Dynamic Programming (DP) has been studied 

for minimum charging cost (price) purpose in [9], where 

the V2G technology did not consider. Also in [2], the 

dynamic programming is compared with quadratic 

programming, where the authors proposed the vehicles as 

state variable of DP algorithm. This formulation leads to 

fluctuation in state of charge of the battery and causes 

harmful effects, e.g., reducing the state of health of the 

battery. In our study, dynamic programming is applied 

with the presence of a V2G application (discharge to the 

grid) and a constraint has been considered to avoid SOC 

fluctuation. 
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This paper is organized by following order: at first, a 

statistical study related to PEV production in France has 

been done, to emphasize the importance of the problem 

and prove the necessity of supervision system, which is 

presented in Section II. After that the principle of the DP 

algorithm is proposed in Section III, and DP applied on 

electric vehicle problem is explained precisely in Section 

IV. In Section V, a simulation test for supervision system 

has been done, by using IEEE 13 node distribution test 

feeder by means of SimPowerSystem toolbox in 

Matlab/Simulink. The results of the statistical study and 

simulations are presented in Section VI, and finally the 

paper is concluded in Section VII. 

II. STATISTICAL STUDIES 

In the national active plan of the Ministry of Ecology, 

Sustainable Development and Energy (France), 

particularly in the favor of renewable energy sector in 

2010, the global perspective was introduced as 

production of 450,000 electric vehicles up to 2015 and 2 

million electric vehicles by the year 2020 [10]. These 

predictions seem consistent with the study by IHS Global 

INSIGHT. The manufacturers forecasting is more 

optimistic. PSA Peugeot Citroen expects to sell 100,000 

electric vehicles by 2015. The other major French 

manufacturer, Renault, estimated that 2 million electric 

vehicles will be sold in France in 2020. All these 

predictions and estimations are showing a growth of 

electrification demands, which lead to the multiplication 

of electricity demand as a negative consequence, and the 

energy storage capability as a positive consequence. For 

this reason, a narrow frontier, between inconveniences 

and advantages of this dramatic change, appears and 

brings new challenges from the electricity supplier’s 

point of view. Here, in Table I, the statistic of existing 

electric vehicles in the French market with their 

contribution percentage to the market is presented [11]. 

The following Estimation has been done to evaluate 

the capacity for energy storage by the year of 2020, if 

consider that we will have 2 million electric vehicles with 

relatively the same market contribution. 

TABLE I.  ELECTRIC VEHICLE PRODUCTION IN FRANCE 

Vehicle Type 

Sales of electric vehicles in France,  
between 2010 and 2013 

Sale market 

contribution, )(mcM  

Capacity

)(mcBat   
Battery type 

Renault ZOE 23.3 % 22 kWh Lithium-ion 

Bollore Blucar 17.8 % 30 kWh 
Lithium 

polymer 

Peugeot iOn 17.3 % 16 kWh Lithium-ion 

Citroën C-Zero 16.5 % 16 kWh Lithium-ion 

Nissan LEAF 8.5 % 24 kWh Lithium-ion 

MIA electric 5.9 % 8 kWh 
Lithium iron 

phosphate 

Renault Fluence 

Z.E. 
5.7 % 22 kWh Lithium-ion 

Smart Electric 

Drive (Fortwo) 
2.5 % 16.5 kWh Lithium-ion 

others 2.5 % 
27.44 
kWh 

Lithium-ion 

 

This estimation also shows that, how much these new 

chargeable loads can affect electrical networks by their 

demand increment. The storage capacity and demand 

increment ),( SOCnC , can be calculated in function of 

the number of electric vehicles " n " and the vehicles' 

state of charge " SOC ". 





m

i

mBatmMSOCnSOCnC
cc

1

)()()1(),(       (1) 

],1,0[SOC  ]
6

102,1[ n  

where Mc(m), is the market contribution coefficient of 

contributor m , and )(mcBat  is the battery capacity of the 

same contributor. The whole surface response is 

presented in Fig. 1. At best optimistic point, which will 

never happen, we can have near to 44 GWh storage 

capacities, when all 2 million vehicles’ batteries are 

completely empty and ready to charge. In real world, the 

vehicles never have the same state of charge at their 

charging demand time. So in this study, a normal case 

with a normal distribution of the state of charge has been 

considered, where the result is depicted in Fig. 2 in 

annual order. For this case, mean value of =0.48 and 

standard deviation of 08.0 , are considered to 

generate the normal distribution of the state of charge. 
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Figure 1.  Storage capacity surface. 
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Figure 2.  Annual estimation of EV storage capacity. 

The Normal distribution function is presented in (2). 
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The obtained result of the normal case shows that, in 

2020 the normal storage capacity of 21 GWh will be 

available. This amount is also huge from electricity 

suppliers’ point of view. If the majority of the available 

vehicles ask for charging at the same time, a series of 

harmful effects would occur and cause damage to the 

whole network. For this reason, different studies have 

been focused on finding an appropriate solution. For 

example, coordination charging and alternative demand 

response with renewable energy sources (e.g., the concept 

Wind to Vehicle). The W2V coordinates the charging 

time of the vehicles with the wind farm generations [12] 

and [13]. In this case, the storage capacity of the vehicles 

can be used to mitigate the intermittency of the renewable 

energies.  

In this paper, we focused on coordination charging 

with the application of V2G technology, to decrease the 

concerns of grid suppliers by proposing a new 

supervision system, thanks to a dynamic programming 

algorithm.  

III. DYNAMIC PROGRAMMING 

The principle of dynamic programming (DP) in 

shortest path problem is to find the optimum path 

(trajectory) between dedicated start and end point. In 

dynamic programming, the general problem is broken 

down into several sub-problems. After that, it starts 

backward over each point from the final point, by 

checking the optimum path at each point and considering 

the optimality of previous sections up to the start point. It 

is considered to have a problem that can be divided into  

n  different sections ( 1n  point). In each section, it is 

possible to have j possibilities between two points. Then 

the objective function in this case is presented as follows: 

 )}({min)( 1
*

 n
j

xfjcnxf  (3) 

where f(xn) denotes optimum path (least cost) from point 

xn to final point, cj represents the cost of the j
th

 possibility 

from point xn to xn+1, and f
*
(xn+1) is the optimum cost 

from point xn+1 to the final point. For better 

understanding of the problem, a graphical representation 

is presented in Fig. 3.  
  

 

Figure 3.  Graphical representation of dynamic programming. 

An important point in dynamic programming is that, 

before solving the problem all the possible paths should 

be defined.  

This point is necessary to guarantee that the optimal 

path will be finally between the start and the end point of 

the problem, i.e., inside the search space. 

Each possible path has a cost based on the problem 

priority and definition. The algorithm is going to check 

the least cost path to reach the next section. 

As the algorithm will consider the a priori optimal 

solution, at the end, the optimal solution proposed by the 

algorithm could be certainly considered as a global 

optimum of the problem in the search space. 

Always, the algorithm is trying to search for all the 

possibilities between different sections of the system. So, 

it is generally time consuming to increase the number of 

sections in one side, and the number of possibilities on 

the other side. Therefore, this method, in case of 

increased number of sections and possibilities, could not 

be in choice priority. Since, in a problem with n sections 

and j possibilities, the j(
n-1

) possibilities could be 

generated at the final step. So, in this case the whole 

search space contains 



n

i

nj
1

)1( possibilities. Dynamic 

programming works best on objects, which are linearly 

ordered and cannot be rearranged (e.g. characters in a 

string, matrices in a chain, points around the boundary of 

a polygon, the left-to-right order of leaves in a search 

tree). 

IV. DYNAMIC PROGRAMMING APPLIED ON V2G 

PROBLEM 

A. Problem Formulation 

One of the points related to electric vehicle problems, 

which can be similarly solved by dynamic programming, 

is managing the charging schedule of the vehicles based 

on the state of charge (SOC) of the battery. To compare 

this problem with dynamic programming, the initial SOC, 

which is the SOC of arrival time at home of the vehicles, 

could be considered as starting point. Also, The final 

SOC (departure time SOC) could be considered as the 

final point. Different actions, such as charging, 

discharging, no charging and charging with variable rate, 

could be considered as possibilities. Also the sections are 

defining in time axis, where each sample time of the 

problem, represents one point (e.g. each t  minutes). 

Here is an example of one vehicle arriving with a specific 

amount of energy in its battery. If we consider a PEV 

with a 20 kWh battery capacity, arriving time at 18:00, 

the arrival SOC equal to 0.6 and departure time at 7:00, 

we can define the charging rate as follow: 

 
t


60

  (4) 

 

PEVE

outlet
P

rC





 (5) 

where   is the sample time conversion coefficient from 

hour to t , poutlet is the power of charging station outlet 

in kW, EPEV is the battery capacity in kWh and 
rC  is the 

charging rate in percentage, which can be considered as 
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SOC amount that will be added to the current SOC at  

each charging sample time. For this case of study, we 

consider normal charging as: 

,4kWPoutlet   kWhEPEV 20  

So the charging rate will be Cr=0.05 .It means that, 

after each 15 minutes by choosing charging action, 5 

percent charges will be added to the current SOC of the 

battery. By means of all these definitions, dynamic 

programming applied to electric vehicle problems are 

formulated as follow: 

 )}1({min)(
*

 tfctf j
j

 (6) 

 )()1()( jrCtSOCtSOC   (7) 

where j, in DP model is considered as a possibility, and 

here is representative of decision factor. It can be chosen 

"0" for no charging decision and "1" for charging 

decision. In fact, in this algorithm, discharging decision 

has been considered as an extra conditional decision to 

avoid SOC fluctuation, which is defined in the algorithm 

flowchart. cj, represents the cost of possible path j 

between steps t and t+1, f
*
(t+1) is introducing the 

optimum cost from step t+1 to the final step, and finally 

f(t) is the optimum cost from step t  to the final step. To 

obtain a charging schedule of each vehicle, we need to 

have SOC in function of time which is proposed in (7). 

B. Constraints and Possibilities 

For DP applications, always we need to define all the 

possibilities, going from start point to the end point. In 

this study, also the possibilities in the form of possible 

paths have been defined, which have finally created a 

surface depicted in Fig. 4. 

The constraints for the algorithm can be defined as 

four red dashed lines, depicted in Fig. 4, which are 

formulated as follow: 

 3.0)(min tSOC  (8) 

 1)(max tSOC  (9) 

 arrivalrbackward SOCtCtSOC )(  (10) 

 1)()(  drforward ttCtSOC  (11) 

where (8) is the minimum SOC line which guarantees 

available energy in the battery for unforeseen cases, (9) is 

the maximum SOC line to avoid overcharging, (10) is the 

backward SOC limit for the recursive approach of the 

algorithm and (11) is the forward SOC limit for the 

progressive approach of the algorithm. These two last 

constraints make sure that the algorithm will never 

exceed the start and the end points of the search surface. 

The 
dt , represents the departure time. 
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Figure 4.  An illustrative example of DP surface compatible with 
V2G.  

C. Inputs Generation 

For this algorithm, we need to have the cost function 

for evaluating the different paths based on their costs. In 

addition, arrival and departure time of each vehicle and 

arrival state of charge are considered as inputs. 

For generating the cost of each possible path, winter 

Daily Load profile (DLP) of France has been chosen from 

RTE (réseau de transport d’électricité) website. RTE is 

the French electricity transmission system operator (TSO). 

This DLP is considered as charging cost. It means that, 

charging decision cost at each sample time is based on 

electricity consumption. By means of this cost strategy, 

as the DP objective function always is searching for 

minimum optimum, it is possible to avoid charging at 

peak hours, and let charging at off-peak hours instead. 

Consequently, the losses in the network will be 

minimized. As it is shown in Fig. 5, normalized value of 

DLP between 0 and 1 is considered as cost of charging, 

and average value equal to 0.5 is considered as cost of no 

charging decision. Discharging decision will be made 

when the vehicle arrives at peak hours, to reduce the peak 

consumption and participate in peak shaving strategy. 

Another strategy, which has been taken in this 

algorithm, is that the cost signal will be updated for later 

arrived vehicles. It means that, after defining the 

vehicle’s charging schedule, which arrived at nt  , the 

global cost will be updated with adding to this schedule, 

and a new global cost will be applied to the next vehicle 

arriving at 1 nt . Thanks to this feature, peak shaving 

would happen uniformly. Also it imposes the charging 

demands to the valley of the off-peak hours in DLP. As 

the huge amount of electric vehicles is not produced yet 

and information about commute time and arrival SOC are 

not available, we enforced to use probability functions. 

Normal distribution has been used in this study to 

generate three sets of information including, arrival SOC, 

arrival time and departure time. This information is 

generated from some general available statistics. To 

know about mean value and standard deviation for 

generating normal distribution of arrival and departure 
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time, traffic information of the Ile de France region in 

France, has been considered from real time traffic website, 

which is presented in lower subplot Fig. 6. The two 

traffic peaks in working days, particularly represent the 

commute traffic times. The 18:00 for arrival time at home 

and the 8:30 for departure time. The standard deviation is 

considered 2 hours. The generated inputs are plotted in 

upper subplot of Fig. 6. The arrival SOC is also 

considered the same as (2), with 48.0 and 08.0 .  
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Figure 5.  Initial cost signals for DP applications 
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Figure 6.  Input generation for arrival and departure time. 

D. Supervision System  

The aim of the supervision system, proposed in this 

study, is to manage charging time of the vehicles based 

on information from vehicle owners, to avoid peak 

charging demands and additionally contribute the 

vehicles to the power demand response from the grid. 

Therefore, the only degree of freedom for vehicle owners, 

is to determine the availability of the vehicles, consists of 

the arrival and departure time. A communication link 

between the supervision system operator (SSO) and 

Battery Management System (BMS), transfers the data 

related to the battery SOC at the arrival time. Finally, the 

SSO will send the charging schedule to the vehicle’s 

battery charger. The SSO makes priority list based on the 

arrival time of the vehicles, and suggests them their 

charging schedule. The algorithm flowchart applied to the 

SSO and schematic of supervision system, are depicted in 

Fig. 7 and Fig. 8 respectively.  

 

Figure 7.  Algorithm flowchart. 

 

Figure 8.  Supervision system schematic. 
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Figure 9.  Load profile comparison of base load, uncoordinated and 
coordinated demand. 

By applying the supervision system algorithm for a 

case of 2 million electric vehicles, the following results 

are obtained. The impact of coordinated charging is 

compared to uncoordinated one, Fig. 9. Uncontrolled 

Power demand with the one that the supervision system 

offers is also compared and depicted in Fig. 10. 

V2G 
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Figure 10.  Power demand comparison of PEVs. 

These results show that thanks to the supervision 

system, we succeed to shift power demands of the 

vehicles’ fleet, from peak-hours to off-peak hours. By 

means of proposed algorithm, peak demand of 

uncoordinated charging reduced by 18 % compared to 

coordinated demand. Also, thanks to the V2G technology, 

3% reduction compared to the base load appears. It is 

important to say that battery limitation, which is imposed 

to the algorithm, did not let more flexibility to the V2G 

direction. It could be considered as a compromise 
between the battery health and the power grid safety. 

V. SIMULATION 

 

Figure 11.  IEEE 13 node test feeder with PEVs charging station. 

For testing the proposed supervision system, a 

simulation study based on IEEE 13 node distribution test 

feeder has been done. The system layout is depicted in 

Fig. 11. The model is developed in Simulink, in phasor 

type, as the continuous time simulation is time 

consuming. The information related to the resistance, 

inductance and capacitance of the lines, transformer load 

conditions and spot and distributed load powers are 

available in IEEE standards. Different penetration levels 

of PEVs have been considered. Reference [14] obtained 

that the capacity of this network for EV charging station 

is equal to 1.2 MW, in case of unity power factor 

consideration. In this study, we have considered 20, 30, 

40 and 50 % penetration level based on the maximum 

capacity of the charging station, to see the impact of 

PEVs charging demand’s increment on voltage profile 

and losses in the lines. In addition, the supervision system 

is considered in parallel to compare the improvement 

level of voltage profile and losses reduction. The results 

of supervised charging are labeled as coordinated, 

whereas not supervised charging results are marked as 

uncoordinated. 

VI. THE RESULTS 
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Figure 12.  PEVs charging powers. 

1:00 5:00 9:00 13:00 17:00 21:00
0.92

0.925

0.93

0.935

0.94

0.945

0.95

Time (Hour)

V
o

lt
a
g

e
 (

p
u

)

 

 
Uncoordinated with 20% PEV

Coordinated with 20% PEV

Uncoordinated with 30% PEV

Coordinated with 30% PEV

Uncoordinated with 40% PEV

Coordinated with 40% PEV

Uncoordinated with 50% PEV

Coordinated with 50% PEV

 

Figure 13.  Voltage profile of the network. 
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Figure 14.  Total losses in the network. 
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The results of simulation are presented in Fig. 12 to 

Fig. 14. In Fig. 12, charging power of arriving vehicles in 

uncoordinated charging makes a peak demand at 19:00, 

which is increasing with more penetration level. While in 

the coordinated charging, the same charging power is 

distributed after the peak-hours until departure time of the 

vehicles. So the vehicles will be charged at the off-peak 

hours from 22:00 to 9:00 approximately. In addition, with 

the help of V2G application, from 13:00 to 20:00, capable 

vehicles with respect to their arrival SOC, participate in 

injecting power to the grid, i.e., vehicle to grid direction. 

In the same way, the voltage drop is shown in Fig. 13, 

where the worst point is related to uncoordinated 

charging with 50 % penetration at peak-hours. With the 

help of supervision system, voltage drop at peak demand 

is reduced. These results could be considered as global 

optimum, as recursive approach of dynamic programming 

has been considered, where at each instant the a priori 

optimal result is taken into account. In addition, an 

improvement of the voltage profile from 13:00 to 20:00, 

at the peak-hours, proves the benefits of the applied V2G 

application. Finally, from network losses point of view, it 

is shown in Fig. 14 that maximum losses at 20:00 with 

50% penetration is reduced with using coordinated 

charging strategy. Peak-hours charging avoidance is an 

important criteria from loss reduction point of view, 

which in this algorithm is implemented successfully. 

Despite the total 24 hours losses is kept constant, an 

important peak loss reduction has been successfully 

considered. 

In fact, with charging the vehicles at the valleys of 

DLP, the losses during the peaks have been avoided just 

with shifting the charging time, constrained to the vehicle 

owners’ priorities and the battery health conditions. 

VII. CONCLUSION 

In this study, a statistical estimation proved the 

importance of the increased integration of the electric 

vehicles and their harmful effects on the distribution grid 

respectively. Consequently, to cope with the future 

problems of PEVs charging demand, a Supervision 

System Operator, with the aim of power losses reduction 

and voltage profile improvement is presented. The 

charging schedule for each vehicle is defined by the SSO, 

with respecting the vehicle’s battery constraints and the 

vehicle owners’ priorities. Thanks to this system, a 

compromise between distribution grid operating point 

and PEV battery is considered. The algorithm inside the 

system tries to coordinate the charging time of the 

vehicles. It has proven that, the V2G application and the 

coordinated charging curtail the line losses and voltage 

drop at maximum loading conditions. The voltage drop 

and power losses can be reduced by more penetration 

level of the PEVs to the grid, to prevent overload and 

damage condition. 
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