
Higher Utilization of Multi-Core Processors in

Dynamic Real-Time Software Systems

Thomas Hanti, Michael Ernst, and Andreas Frey
Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt

Email: {Thomas.Hanti, Michael.Ernst, Andreas.Frey}@thi.de

Abstract—The number of functions and complexity in real-

time Electric/Electronic systems is constantly increasing.

With the ongoing electrification of vehicles an increasing

number of software functions is expected to be integrated in

the Electric/Electronic systems. In order to provide the

necessary calculating power, more and more multi-core

processors will be used in Embedded Electronic Control

Units. With the rising number of functions on multi-core

processors dynamic software systems can help to achieve a

more efficient utilization than currently used static system

configurations. Therefore the step from static to dynamic

system configuration will be the key. Our paper will present

the design of a new scheduling approach, the Hierarchical

Asynchronous Multi-Core Scheduler (HAMS), for real-time

Electronic Control Units. Special strategies for dynamic

system design and dynamic software system description will

be presented as well as a first evaluation of our design.

Index Terms—real-time scheduling, scheduler design,

dynamic scheduling, hierarchical scheduling, asynchronous

scheduling, multi-core scheduling, embedded scheduling

I. INTRODUCTION

A. Issues with Multi-Core Systems

The increasing demand of calculation power in the

desktop and server environment has urged the processor

manufacturers to either increase the clock speed or to add

more cores to a processor. As the maximum clock speed

of processors is running up against its physical limits,

multi-core processors have gained significant importance.

Nowadays multi-core processors have become the

standard architecture for applications where a lot of

calculation power is needed, even in the embedded

domain.

As multi-core processors are widely used in non real-

time applications in the consumer electronics market,

their applications are expanded to safety critical real-time

application in cars or airplanes. New automotive

technologies like car to car communication, highly

automated driving, camera based driver assistance and

infotainment are current topics that push high

performance embedded devices in the car. In the context

of avionics the operation of unmanned aerial vehicles

with autonomous situation interpretation using multiple

sensors and cameras and autonomous decision making in

Manuscript received June 28, 2013; revised September 2, 2013.

complex scenarios also need high performance embedded

devices. This motivates the use of multi-core processors

which are able to compute safety relevant real-time tasks.

However, even if there are numerous multi-core

processors for control units in cars and airplanes available,

an overall concept for an efficient utilization is not

applicable. Today’s multi-core platforms are used with a

static task assignment. This means that each real-time

task is assigned to one core of the multi-core system in an

apriori engineering process that requires a detailed

analysis, e.g. the exact Liu-Layland test to check if the

real-time task set will meet all its deadlines. Still the

static assignment of tasks does not exploit the full

potential. The industry demands solutions to use the

potential even further.

Our analysis has encountered two main limitations

with this approach:

 Static assignment of tasks in multi-core systems

generates inflexibility in system definition and

usage. When a multi-core control unit is

partitioned each task is statically assigned to one

core reserving a part of the calculation power and

memory. For example car features like cruise

control, rain sensor or lane departure warning can

be selected by the costumer at the time of order.

But the corresponding hardware and software

system in the actually built car is statically defined

and tested. Each alternative system configuration

requires extensive verification and testing. As a

consequence of cost evaluation the system is

statically defined taking inefficient usage of the

processor into account, leaving a high potential for

further cost and efficiency optimization.

 Real-time embedded systems are designed

according to maximum execution times. In order

to keep the carefully balanced timing behavior

untouched the processor resource is statically

allocated. The calculation time of tasks, especially

in driver assistance systems and systems for highly

automated flying, is increasingly dependent on the

situation. Along with the rising percentage of

those functions in future cars or unmanned aerial

vehicles this leads to a non predictable timing

behavior in statically assigned systems. As it is

impossible to foresee and test all possible

situations an onboard balancing can improve the

usage of the processor resource.

249

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing
doi: 10.12720/ijoee.1.4.249-255

In order to further optimize the usage of the embedded

real-time multi-core systems we propose a new approach

in multi-core real-time scheduling. Using a dynamic

scheduling environment which will allow us to utilize the

processor more efficiently than static scheduling reducing

costs and improve efficiency.

B. Related Work

Single-core real-time scheduling is by far the most

precisely examined area of scheduling strategies due to

its relevance for safety. Important real-time scheduling

algorithms are Rate Monotonic Scheduling (RMS) for

static scheduling, Earliest Deadline First (EDF) and

Maximum Urgency First (MUF) [1] and [2] for dynamic

scheduling.

Liu and Layland et al. have proven in their static RMS

research that the maximum utilization of a processor is 69%

(ln2) for W∞ tasks where all tasks can meet their

deadlines [3]. Other research has demonstrated that the

maximum utilization for W∞ tasks can be much better by

using other schedulability tests like Hyperbolic Test [4],

Time Demand Analysis or Pillai-Shin Test [5], but the

calculation time, task requirements, effort and calculation

power for such tests is much higher than the classic Liu

and Layland analysis.

A dynamic scheduling algorithm is the MUF algorithm

which improves Liu and Layland’s EDF algorithm. This

dynamic scheduling algorithm can have up to 100%

processor utilization on single-core systems.

Subsequently RMS and EDF algorithms have been

adapted to multi-core systems. These adaptations led to

different runqueue approaches as seen in Fig. 1.

The partitioned approach uses a separate runqueue for

each core. The runqueues are filled with a set of tasks and

then managed by each core according to the underlying

scheduling algorithm on its own. In the partitioned real-

time approach the tasks do not migrate from one core to

another instead they are statically distributed beforehand.

The partitioned approach equals the algorithms used for

single-core processors and brings along the same

disadvantages as address in section 1A.

Another approach is the global single “global”

runqueue for the whole system. Whenever a core has

finished task calculation, it is going to pick the next one

out of the global runqueue [6] and [7]. The tasks will

therefore be moved freely from one core to another.

Particularly in EDF this approach is common because

load balancing among cores is improved. But it shows

significantly less processor utilization than the partitioned

approach [8]. Fig. 1 lists common scheduling algorithms

and their utilizations in comparison to our HAMS

scheduler.

Figure 1. Design space of Multi-Processor Real-Time Scheduling [9] extended with the Hierarchical Asynchronous Multi-Core Scheduler (HAMS)

C. Motivation and Structure

The research in real-time scheduling and multi-core

real-time scheduling is very intense. But none of the so

far applied scheduling techniques, like RMS, EDF, global

or partitioned runqueues are able to provide the required

performance enhancements in the automotive and avionic

industries. All common solutions are designed for static

real-time systems, leaving further optimizations regarding

efficiency of the processor usage.

In this paper we introduce a dynamic asynchronous

multi-core real-time scheduling design (HAMS), a new

approach in multi-core scheduling; which:

 allows an optimal usage of the processor in all

situations

 is able to load balance the workload in a real-time

environment

 introduces new power saving features like

dynamic voltage frequency scaling(DVFS) into

real-time task planning

 can be used with asymmetrical multi-core

processors

Thus improvements in cost and efficiency of processor

usage will be the result!

This paper is structured as follows: Section II will

introduce the basic design and the knowledgebase for our

Hierarchical Asynchronous Multi-Core Scheduler

(HAMS) consisting of a task-, logical linkage- and

system model. In Section III A we will introduce the

different parts of our HAMS scheduler in more details

and compare it with today’s statically scheduling III B.

In Section IV we will outline our expectations on the

hierarchical asynchronous scheduling concept and the

Multi-core

real-time sche duling

(RMS , EDF)

Global

Fixed

Priority

(RMS)

Dynamic

Priority

(EDF)

69% 100% 37.5%

HAMSPartitioned

50%

Dynamic

Priority

(EDF)

Fixed

Priority

(RMS -US)

>100%

250

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

issues that come along with hierarchical asynchronous

scheduling rounded up with an outlook in Section V.

II. DESIGN OF THE HAMS SCHEDULER

A. Basic Design of the Hierarchical Asynchronous

Multi-Core Scheduler (HAMS)

To overcome the limitations that come along with

static multi-core configuration a more general approach is

needed that allows the use of all cores with an overall

strategy. As described in section 1A different task types,

consisting of hard, soft or variable deadlines, can

cooperate on one system. To balance and treat these

different types correctly it is very important that our

scheduler is hierarchically structured. With a Second

Layer Scheduler (SLS) controlling the task distribution

and a separate asynchronous First Layer Scheduler (FLS)

managing the local runqueue for each core (see Fig. 2).

Figure 2. Basic HAMS layout

The HAMS SLS scheduler is the highest entity of the

HAMS scheduler which controls the correct and efficient

distribution of tasks among the cores taking the current

system state and task timing information into account and

communicates with the lower level.

The HAMS SLS scheduler incorporates a predefined

global knowledgebase consisting of all tasks running on

the system, the task-dependencies and a description of the

system itself, i.e. a task-, logical linkage- and system

model. With this knowledge the HAMS SLS scheduler is

able to control the tasks in the system, i.e. to dynamically

suspend tasks, migrate tasks among cores and delay or

shift kernel administration tasks to increase calculation

power by simultaneously decreasing power consumption

and still comply with all deadlines, i.e. utilizing the

system more efficiently. The multi-core task model for

the system is the basis for the hierarchical design and the

knowledgebase.

The lowest entity of the HAMS scheduler, the HAMS

FLS, is able to flexibly integrate tasks that are assigned

from the HAMS SLS scheduler to its local runqueue. All

FLS schedulers are running asynchronously in order to

fully exploit the multi-core potential. The local workload

calculation of the HAMS FLS scheduler is the basis for

the SLS task distribution decision. The HAMS FLS

scheduler utilizes already existing scheduling classes like

RMS or MUF. These classes will be the same as used in

today’s schedulers. In respect to the scheduling class the

lowest entity observes the task deadlines and hence task

calculation sequence as any normal real-time scheduler.

B. A Multi-Core Task Model

A common model to describe real time tasks is the

standard task model for periodic real-time tasks = { ,

 , } where the parameters of a task are represented

by its worst case execution time , its period and its

deadline . A task set is expressed with ,

 ,…, } [9]. For periodic real-time tasks with matching

period and deadline, this representation reduces to a 2-

tuple = { , } [10]. Sporadic real-time tasks are

characterized by the 3-tuple = { , , } where is

the minimum separation between two calculation

sequences of the same task, where >0. In an aperiodic

task the same 3-tuple as described for sporadic tasks can

be used but here can be zero [11].

For our HAMS SLS scheduler this task description is

not detailed enough. First of all multi-core processors can

successfully vary their clock frequencies stepwise to

reduce power consumption, e.g. by dynamic voltage

frequency scaling [12]. And by reducing the clock

frequency the worst case execution time will become

longer because a task will need more time to calculate its

results. So the worst case execution time for each

possible processor speed (,… ,) has to be

added to the task[13].

As the HAMS SLS scheduler will make use of

different scheduling classes, like RMS and MUF, the

attribute criticality level of a task has to be added by

the user. With the value the HAMS scheduler will

make sure that no critical tasks will fail during failure

situations whatever scheduling class is used on the core.

But when different scheduling classes are involved, each

task has to be assigned to one specific scheduling class

 In our HAMS scheduler it is possible to use almost

every already existing scheduling classes, like MUF,

RMS, single shot and even fair priority scheduling.

Most publications for real-time multi-core scheduling

assume they are in a homogeneous, symmetric

environment. For example in the P4080 processor not

every core in a real-time embedded control unit has

access to the full set of peripherals [14]. Therefore a

value to which cores the task is bound has to be added

called: A task can be bound to one core, two or

more cores as well as being free from any core bound.

Further on, a task needs to have an attribute of its

required peripherals . For example this may be an

Ethernet, Serial Interface or a Floating-Point Unit.

The last, but most important attribute of a real-time

task in the HAMS scheduler, is the task calculation state

 With the help of this attribute a task can prolong or

shorten its parameters () when there is a

reason to do so and signal it to the HAMS scheduler.

Additionally the attribute of one task can be linked

with another task, called a logically linked task set

(explained later in section 2C). Particularly this attribute

is very important because it helps the scheduler to

increase the dynamic behavior, introduce planning

essentials for DVFS and increase efficiency of the overall

system by simultaneously ensuring schedulability. By the

help of (1) the multi-core task model of a periodic real-

time task for RMS and MUF scheduling classes can be

summarized.

FLS 0

Core 0

FLS 1

Core 1

FLS 2

Core 2

FLS n

Core n

SLS

251

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

 } }
 }

 } (1)

Due to the fact that the tasks are located in real-time

embedded system the first four parameters of (1) should

be static and thus kept unchanged during runtime. But

depending of the the period time , the deadline

 and the worst case execution time can vary.

Equation (2) adapts the value for sporadic or

aperiodic tasks in RMS and MUF scheduling classes.

 } (2)

The knowledgebase is the backbone of our system. The

design uses the multi-core task model which is

summarized in (1). It is important that, additionally to the

already described parameters, every task is assigned with

a global identification so that the underlying operating

system is able to recognize the task in a running

environment.

C. A Task Dependancy Model

In an asynchronous dynamic system architecture where

tasks can migrate between different cores the task

dependency model is a key issue for efficient assignment.

Task dependencies express temporal dependencies

between tasks, for example: one task needs to run before

another task (consecutively), they need to run at the same

time (concurrently) or a task can only run when another

task is also running.

One common technique in real-time scheduling is to

assign a higher priority to the task which needs to run

before another one. This technique will always work, on a

single-core processor with a preemptive RMS scheduling

algorithm.

On a multi-core-system it may happen that one task is

assigned to one core and the other task is assigned to

another core so that both tasks are not running on the

same core with inexplicit consecutive order. While both

tasks have the highest priority in each set of tasks on the

particular core, it occurs that both tasks run concurrently

even if they are supposed to run consecutively. A

possible solution is to statically assign these two tasks to

the same core of a multi-core system or to introduce

special multi-core inter-task communication techniques.

But this will lead to negative effects in load balancing

and thus to increased power consumption [15]. In the

knowledgebase of the HAMS SLS scheduler such tasks

are grouped together in logically linked task sets. An

example of the automotive industry clarifies the usage of

the task calculation state .

In a modern car, two driver assistant systems, the

cruise control and the park distance control feature can be

implemented. The cruise control is realized with one task,

the “cruise_main (cm)” task, in charge for controlling the

vehicles speed when activated. The park distance control

consists of two implemented task, the “park_main (pm)”

task in charge of acoustically notifying the driver and the

“park_edge_detection (ped)” task which calculates the

distance to the next obstacle. In Table I the TCs and the

corresponding execution times and period are listed for

periodic every task, where period time equals execution

time. With the requirement that the cruise control can

only be active when the speed is above 30km/h the three

tasks can be logically linked (Table II). For example

when the cruise_main task is in state TCcm1 then and only

then the park_main can be in TCpm2 or park_main and

park_edge_detection are in the active state (TCpm3;

TCped3). With this help load balancing and therefore the

power consumption becomes more efficient.

TABLE I. TASK CALCULATION STATE EXAMPLE

Task name TC for tasks in different situations

Event→ speed<30km/h speed>30km/h Activated

cruise_main TCcm1 =(1;5) TCcm2 =(2;4) TCcm3 =(3;5)

park_main TCpm1 =(1;5) TCpm2 =(1;5) TCpm3 =(1;3)

park_edge_de TCped1 =(0;3) TCped1 =(0;3) TCped3 =(1;5)

TABLE II. LOGICAL LINKAGE AMONG TASKS

Task name Logical linkage among tasks

 speed<30km/h speed>30km/h Activated

cruise_main TCcm1 

(TCpm2 

(TCpm3TCped3))

TCcm2 

(TCpm1TCped1)

TCcm3

(TCpm1TCped1)

park_main TCpm1 

TCcm1TCped1)

TCpm2 

(TCcm2 TCcm3)

TCpm3

(TCcm1TCped3)

park_edge_de TCped3 

(TCpm2TCcm1)

D. A Multi-Core System Model

When all parameters and linkages of the real-time

tasks have been identified the knowledgebase for the

HAMS SLS scheduler needs to be completed with a

system model. As tasks can be dependent on peripherals

the HAMS scheduler needs to know which core has

access to which peripheral device. In this system model

each core must be described with the parameters: The

steps from minimum to maximum clock frequency ,

minimum and maximum memory address and

available peripherals as in (3). With these parameters

the HAMS SLS scheduler can load balance tasks

correctly, i.e. which core has access to which peripheral

or memory address and react appropriately to failures like

loss of peripherals.

 {

} (3)

E. Knowledgebase Creation

When all parameters and linkages of the real-time

tasks have been identified the knowledgebase for the

HAMS scheduler can be designed in an offline tool. In

this tool the system model has been entered into the

knowledgebase, all real-time tasks that need to run on the

system must be entered as provided in (1) and (2) as well

as their logical linkages. Therefore all parameters

() and linkages have to be defined. Especially

in the HAMS scheduler the attribute of every task

makes this very difficult. Here the values for

every have to be detected. An offline tool is used to

check the correctness, i.e. feasibility and schedulability,

and the optimal load balancing of the system upon the

252

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

entered parameters. The output is stored in a file which

will be integrated in the online scheduler.

III. HIERARCHICAL ASYNCHRONOUS MULTI-CORE

SCHEDULING

A. Initializing the Layered Structure in the HAMS

Scheduler

The HAMS scheduler startup sequence is defined by

the initial startup sequence of the operating system (OS)

as the scheduler is a task that is initialized as part of the

OS. In the description we assume a LINUX kernel as

operating system.

 FLS with normal operating sequence:

In the first seconds of the system booting procedure the

FLS initializes its parameters and the communication

interface to the SLS. When this is done the kernel

initializes system internal tasks and the SLS. While the

system boots up, the FLS will run the default scheduling

class of the OS.

Once the OS has finished its initialization, first the

SLS and then all the real-time tasks (representing the

features of the embedded system) are spawned. Right

after completion of the spawning for all real-time tasks,

the initialization and boot up sequence is done.

Afterwards each core transmits information about

which tasks are currently running on it and the task-

structure for each task to the SLS. Additionally the FLS

will get a list of tasks and the corresponding scheduling

class the core has to schedule. It picks the next task to run,

manages the task deadline miss handling, the OS internal

periodical system timer, the frequency of its core, keeps

alive the communication with the SLS and obeys to

migration calls from the SLS (see Fig. 2).

 SLS normal operating sequence:

After the SLS has been spawned by the FLS it will

read out the knowledgebase which is stored inside the

kernel since the compile time. By doing this the SLS will

know everything about the task dependencies, the system

model and the tasks that should run on the system.

After this, the SLS will establish the communication

with the FLS and receive a list of tasks that are running

on the system and stores them in a global runqueue. The

SLS will start to calculate the correct distribution of the

real-time tasks among the cores and send the results to

the FLS. The SLS now keeps the communication with the

FLS alive, surveils their behavior, reacts to threads like

unschedulable task sets, communication loss to one FLS

and system failures e.g. loss of peripherals. The responses

of the SLS to failures are to migrate the task onto another

core of the system, if possible, or to command the whole

system into a failure state where only the tasks with the

highest criticality level are scheduled.

B. Comparison of HAMS Scheduler Design

To validate the design of the HAMS scheduler against

the existing static scheduler design an example illustrates

the HAMS advantages. We assume that the tasks

introduced in the Tables I and II of section 2C are

statically scheduled on one core. We must assume that all

three tasks can be active together, because static

scheduling does not distinguish between any logical

linkages. Thus the maximum allowed utilization in a

single core system is exceeded by the static scheduler

using for calculation. Hence in a statically scheduled

system we would need a dual core system. In HAMS

scheduling it is possible to schedule all three tasks on one

core, because the HAMS scheduler can assure that either

the speed control is active or the park distance control is

active. This feature of the HAMS scheduler allows us to

utilize the processor far more efficiently as in comparison

to static scheduling. Equivalent to static scheduling we

can reach more than 100% processor usage as described

in Table III.

TABLE III. STATIC VS. HAMS SCHEDULING ON A SINGLE CORE

speed v

in km/h
Comparison

 static scheduling HAMS

 Tasks Wmax Wis Tasks Wmax Wis

v>30 3 73% 113% 2 88% 80%

v<30 3 73% 113% 3 73% 73%

When using a multi-core system, e.g. a dual core, a

statically scheduled system is forced by default to split

the tasks cruise control and park distance control on two

separate cores. Thus the schedulability checks will work.

As a result the task distribution will be affected, i.e the

system is not allowed to migrate the cruise control and

park distance control any more. Hence an increase in

power consumption will be the result as illustrated in

table IV, based on the formula g(S) = S
2
 from [16]. The

knowledgebase enables the HAMS scheduler to actively

load balance the workload or even shut down a core

depending on the situation.

TABLE IV. STATIC VS. HAMS SCHEDULING POWER CONSUMPTION

speed v

in km/h
Comparison

 static scheduling HAMS

 Core Wis P core Wis P

v<30
1 20% 0.04 1 40% 0.16

2 53% 0.28 2 33% 0.11

result ∑ 0.32 ∑ 0.27

A further advantage of our HAMS scheduler is the

usage of processor power saving features, e.g. dynamic

voltage frequency scaling (DVFS). In the HAMS

scheduler the runtimes for a real-time task according to

all possible CPU frequencies is listed in the

knowledgebase. On this basis the HAMS scheduler can

decide to throttle or speed up a single core without

intense pre calculations like in today’s static scheduling.

By looking at table IV the HAMS scheduler can decide to

lower the frequency of core 1 by 50%. The result will be

ca. a 50% higher utilization on core 1. Taking a linear rise

and fall of the power consumption according to the

workload the HAMS advantages can be illustrated. Fig. 3

and Fig. 4 show that the overall power consumption with

the HAMS scheduler (12,6W in Fig. 4) is lower than

static scheduling (14,6W in Fig. 3) by using DVFS. Thus

the HAMS scheduler cannot only make use of DVFS to

253

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

improve the system efficiency, it can do it in a real-time

system environment without any violation of the

deadlines.

Figure 3. Static scheduling without DVFS power consumption
=14,6W

Figure 4. HAMS scheduling with DVFS power consumption =12,6W

Another advantage of HAMS scheduling is the failure

mode. When failures in the system occur the HAMS

scheduler can assure that critical real-time tasks, marked

with the highest , will not fail. Or tasks that are also

impacted by the failure will not be scheduled. In a static

system the system response to failure is limited.

IV. REASEARCH TOPICS IN HAMS SCHEDULING

By the help of HAMS scheduling the step from

statically to dynamic systems can be made. But this

advantage comes along with three known issues that have

to be addressed. The first issue is to determine the precise

values of the multi-core task model for each task. Exact

values can only be measured with extensive testing.

Thankfully various tools for testing a real-time task

runtime under multiple circumstances exist.

The second issue is based in the real-time task

distribution process of the SLS. Distributing tasks among

cores with as many parameters as mentioned above in the

multi-core task model is a very time consuming and a

NP-Hard process. Especially when the schedulability of

all real-time task sets for every possible configuration has

to be checked during operation (online). In a real-time

system such proceedings have to be as fast as possible,

because the tasks shall not miss their deadlines. Hence an

online approach like this will cause timing issues. To

speed up the process of finding a correct task set, the

knowledgebase has to be extended with a distribution

model.

The last issue in HAMS scheduling is related to the

communication process. When the SLS communicates

with the FLS it has to be secured that no other program

can disturb, block or use the connection for its own

purpose. If the connection can be modified by other

programs the correct functionality of the SLS cannot be

guaranteed leading to an unstable system with unknown

results.

V. CONCLUSION AND FURTHER REASEARCH

The HAMS scheduler shows advantages in comparison

to normal static scheduling. The next logical step is to test

this design in practice. We will use a multi-core ARM

Cortex™ A9 platform which can run a basic Linux based

operating system. In the current Linux kernel we will

replace the completely fair scheduler with our HAMS

scheduler. By doing this we will modify the scheduling

classes already existing in the Linux kernel and insert

new classes for RMS, MUF and single shot scheduling to

complete the FLS. In addition the SLS has to be built

with a special focus on algorithms for fast real-time task

distribution and secure inter-scheduler communication.

When the system is completed, we will validate the

systems behavior. This will let us draw conclusions about

the promised efficiency increase. For validation proposes

we will use different tasks that will simulate specific

behaviors that run in an automotive embedded control

unit.

The result is an overall validation of the advantages

and disadvantages of a HAMS scheduler design and the

underlying algorithms.

REFERENCES

[1] D. B. Stewart and P. K. Khosla, "Real-time scheduling of

dynamically reconfigurable systems," in Proc. IEEE International

Conference on Systems Engineering, Dayton, OH, 1991, pp. 139 -
142.

[2] J. Lehoczky, L. Sha, and Y. Ding, "The rate monotonic scheduling

algorithm: Exact characterization and average case behavior," in
Proc. the IEEE Real Time Systems Symposium, Santa Monica, CA,

1989, pp. 166 - 171.

[3] C. Liu and J. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment," Journal of

the ACM, vol. 20, no. 1, pp. 46-61, Jan. 1973.

[4] E. Bini, G. Buttazzo, and G. Buttazzo, "A hyperbolic bound for
the rate monotonic algorithm," in Proc. 13th Euromicro

Conference on Real-Time Systems, Delft, 2001, pp. 59 - 66.

[5] P. Pillay and K. Shin, "Real-time dynamic voltage scaling for low
power embedded operating systems," in SOSP 01: Proc. the

Eighteenth ACM Symposium on Symposium on Operating Systems

Principles, vol. 1, Oct. 21-24, 2001, pp. 89-102.
[6] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah, "The case

for fair multiprocessor scheduling," presented at International

Parallel and Distributed Processing Symposium, Phoenix, AZ,
April 22-26, 2003.

[7] L. Lundberg, "Analyzing fixed-priority global multiprocessor

scheduling," in Proc. 8th IEEE Real-Time and Embedded
Technology and Applications Symposium, San Jose, CA, 2002, pp.

145-153.

[8] T. Baker, "A comparison of global and partitioned EDF

schedulability tests for multiprocessors," presented at International

Conf. on Real-Time and Network Systems, Paris, Nov. 8-9, 2005.

254

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

[9] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, "Partitioned
fixed-priority preemptive scheduling for multi-core processors," in

Proc. 21st Euromicro Conference on Real-Time Systems, Dublin,

2002, pp. 239 - 248.
[10] N. Guanyz and M. Stiggey, "Fixed-priority multiprocessor

scheduling with liu \ layland’s utilization bound," in Proc. Real-

Time and Embedded Technology and Applications Symposium,
Stockholm, 2010, pp. 165 - 174.

[11] R. Mallreceived, Real-Time Systems: Theory and Practice, 1st ed.

India, Addison Wesley, 2007, ch. 3.
[12] Texas Instruments Inc., OMAP4430 Multimedia Device, 2nd rev.

Texas Instruments, Dallas, TX, 2013, ch 3.

[13] D. Zöbel, Echtzeitsysteme : Grundlagen der Planung, 1st ed.
Berlin, Springer, 2008, ch. 4.

[14] Freescale Semiconductor Inc., P4080: QorIQ P4080 Eight-Core

Communications Processors with Data Path, 1st rev. Freescale
Semiconductor Inc., Tokyo, 2013, ch. 6.

[15] T. AlEnawy and H. Aladin, "Energy-aware task allocation for rate

monotonic scheduling," in Proc. the 11th IEEE Real Time and
Embedded Technology and Applications Symposium, San

Francisco, CA, 2005, pp. 213 - 223.

[16] H. Aydin and Q. Yang, "Energy-aware partitioning for
multiprocessor real-time systems," presented at Parallel and

Distributed Processing Symposium, Nice, April 22-26, 1003.

Thomas Hanti, 1987, born in Ingolstadt and studied
International automotive engineering (Master) at the

university of applied sciences Ingolstadt from 2011 to

2012. Since 2012 he is Ph.D. student at the Technische
Hochschule, University of applied sciences Ingolstadt in

cooperation with the Technical University Chemnitz and

CASSIDIAN in the research field of dynamic real-time embedded
Systems and integrated modular avionics

Michael Ernst, 1987, born in Ingolstadt and studied

Software Engineering for Embedded Systems (Master) at
the university of applied sciences Ingolstadt from 2005 to

2011. Since 2012 he is Ph.D. student at the Technische
Hochschule, University of applied sciences Ingolstadt in

the field of dynamic real-time embedded Systems

Andreas Frey, 1969, born in Munich and has done his

Ph.D. (Dr.-Ing.) from 1998 to 2003 at the University of the
German armed forces, Neubiberg. In the years from 2003

until 2010 he worked in the department of Software-

Engineering and Electric/Electronic Architecture for
driving dynamics at the BMW AG. Since 2010 he is Professor for

Aerospace Informatics and Avionics at the Technische Hochschule,

University of applied sciences Ingolstadt

255

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

