
Developing a Nested Class Complexity Metric

for Nested Classes

Rajender Singh Chhillar
M.D. University, Rohtak, Haryana, India

Email: chhillar02@gmail.com

Parveen Kajla and Usha Chhillar
M.D. University, Rohtak and AIJHM (PG) College, Rohtak,Haryana,India

Email: {pkajla77, chhillarusha01}@gmail.com

Abstract—In Object-oriented programming languages like

Java; it is the basic need to define a class within another

class. These classes are known as nested classes or inner

classes. The scope of a nested class is limited to its outer

class. All the variables and methods of outer class are

accessible inside inner class enhances encapsulation. Nested

classes also help in packaging of the classes. In this paper,

we propose a new metric, namely, Nested Class Complexity

Metric (NCCM) to measure the complexity of nested classes

and the results are compared with existing metrics, which

are quite encouraging.

Index Terms—nested classes, complexity metrics, NCCM,

packaging, encapsulation

I. INTRODUCTION

The object oriented approach consists of two basic

terms Class and Object. A class is a blueprint or

prototype that defines the variables and the methods

common to all objects of a certain kind. The main

difference between a class and an object is that objects

are tangible, but a class is always intangible. Classes

provide the benefit of reusability. A number of Metrics

have been proposed in object-oriented programming for

classes, inheritance, coupling, cohesion, and

polymorphism [1]-[6].

Inheritance provides a very helpful concept of

hierarchy and code reusability. Most of the object

oriented languages implement the concept of Nested

Classes or inner classes i.e. class within a class. Inner

classes share all the features of a regular class. They

could contain constructors, attributes, methods and

further inner classes.

This nested feature reduces coupling and increases

cohesion of the system which is desirable but on the other

hand excessive use, affects the readability of the system

and thus increases the complexity and maintainability of

the system [7].

Nested classes are the basic needs in the languages like

Java. These languages also support Nested Methods or

calling of a method into the methods of the same class.

Manuscript received June 27, 2013; revised September 11, 2013.

Thus, if class B is defined within class A, then B is

known to A, but not outside of A. A nested class has

access to the members, including private members, of the

class in which it is nested. However, the enclosing class

does not have access to the members of the nested class.

A static nested class is one which has the static

modifier applied. Because it is static, it must access the

members of its enclosing class through an object. That is,

it cannot refer to members of its enclosing class directly.

Because of this restriction, static nested classes are

seldom used.

The most important type of nested class is the inner

class. An inner class is a non-static nested class. It has

access to all of the variables and methods of its outer

class and may refer to them directly in the same way that

other non-static members of the outer class do. Thus, an

inner class is fully within the scope of its enclosing class.

Most of the researchers focus on object oriented

metrics [8]-[12] and its complexity [13]-[17] and a few

on inner classes [18] and [19]. In this paper, a new metric

NCCM is proposed to check the nested behavior of the

classes. Fig. 1 shows a basic program implements classes

within a class. It defines a class Saving Account and class

Current Account within the class Bank Account.

Figure 1. Nested class example.

This paper comprises of five sections. Section II

depicts the new Nested Classes Complexity Metric

(NCCM) for object oriented software development.

A Sample Program for Nested Classes

class BankAccount

{

BankAccount();

class SavingAccount

 {

SavingAccount();

 };

class CurrentAccount

 {

CurrentAccount();

 };

};

244

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing
doi: 10.12720/ijoee.1.4.244-248

Section III illustrates the experimental results of proposed

metric. Section IV compares the results of proposed

metric with existing metrics. Section V refers concluding

remarks and future scope.

II. PROPOSED NESTED CLASSES COMPLEXITY

METRIC

Software, designed using object oriented approach

consists of classes and within that data members and

member functions. Considering the above program, it is

observed that the readability, complexity and

maintainability of the software in object oriented

approach are not only depending upon the number of

classes (nC) but also on their level of existence (L) in

their structure. The excessive use of nested classes

increases the difficulty level during maintainability.

In this study, we consider the root level (L=0) as outer

class and thus consider the nested classes from the first

level (L=1). We can define the Complexity Metric

(NCCM) at each nested level as

Thus to count the number of classes in a program at

first level (where L=1)

 ∑

 ∑

Similarly for second nested level is

 ∑

 ∑

And so on for p
th

 nested level is

 ∑

Using the above equations, we can define the

Complexity Metric (NCCM) as

1 1

1k

nt
t it it

NCCM
t Ct

where

k is the total number of nested levels

n is the total number of classes (C) at each level

Sample programs are shown in Fig. 2 and Fig. 3, which

shows class hierarchy having five classes with two and

five nested level respectively. NCCM value for these

programs are calculated and which shows that Fig. 2 have

less complexity than Fig. 3.

Figure 2. NCCM value=0.70.

Figure 3. NCCM value=1.48.

III. EXPERIMENTAL RESULTS

In order to measure the maintainability, complexity of

Nested Classes in Object oriented systems, first of all the

15 programs are developed using object oriented

language java; with two, three, four and five classes and

then the proposed metric is applied.

The programs P1 to P15 are arranged in such a manner

that they are sorted by number of nested classes and then

by number of immediate inner classes to calculate the

NCCM value by implementing the proposed metric in

class A

{

 Class B

 {

 Class C

 {

 Class D

 {

 Class E { }

 }

 }

 }

}

Nested Levels = 5

No. of immediate nested classes at Level 1= 1

NCCM(1) =

 = 0.50

No. of immediate nested classes at Level 2= 1

NCCM(2) =

 = 0.33

No. of immediate nested classes at Level 3= 1

NCCM(3) =

 = 0.25

No. of immediate nested classes at Level 4= 1

NCCM(4) =

 = 0.20

No. of immediate nested classes at Level 5= 0

NCCM(5) =

 = 0.20

NCCM = ∑

 = 0.50+0.33+0.25+0.20+0.20

 =1.48

class A

{

 Class B { }

 Class C { }

 Class D { }

 Class E { }

}

Nested Levels = 2

No. of immediate nested classes at Level 1= 4

NCCM(1) =

 = 0.20

No. of immediate nested classes at Level 2=0

NCCM(2) =

 = 0.50

NCCM = ∑

 = 0.20+0.50=0.70

245

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

Table I. Program P1 has minimum level of immediate

inner classes, whereas program P15 has maximum level

of immediate inner classes.

TABLE I. NCCM VALUE FOR PROGRAM P1 TO P15

P
ro

g
ra

m
s

N
u

m
b
er

 o
f

N
es

te
d

 C
la

ss
es

 Number of immediate inner classes

at

N
C

C
M

 V
al

u
e

L
ev

el
-1

L
ev

el
-2

L
ev

el
-3

L
ev

el
-4

L
ev

el
-5

P1 1 1 0 -- -- -- 1.00

P2 2 2 0 -- -- -- 0.83

P3 2 1 1 0 -- -- 1.17

P4 3 3 0 -- -- -- 0.75

P5 3 2 1 0 -- -- 1.00

P6 3 1 2 0 -- -- 1.08

P7 3 1 1 1 0 -- 1.33

P8 4 4 0 -- -- -- 0.70

P9 4 2 2 0 -- -- 0.92

P10 4 3 1 0 -- -- 0.92

P11 4 1 3 0 -- -- 1.03

P12 4 2 1 1 0 -- 1.17

P13 4 1 2 1 0 -- 1.25

P14 4 1 1 2 0 -- 1.28

P15 4 1 1 1 1 0 1.48

IV. COMPARISION WITH EXISTING METRICS

The results of the proposed metric are compared with

the existing metrics proposed by various researchers.

Existing Metrics like Depth Inheritance Tree (DIT) [7],

Maintainability Metric (M) [18] and Complexity

Metric(C) [19] for inner classes are used to compare the

results.

DIT = the maximum length from the node to the root

of the tree.

1

1
M

n

where n denotes number of immediate inner classes of an

outer class

b
C

d

where b denotes the breadth of a particular depth level

and d denotes the depth level

A. Comparison of Metrics with Three Classes (Two

Nested)

TABLE II. COMPARISON OF NCCM VALUE OF PROGRAM P2 TO P3

Program

Number of

Nested
Classes

DIT NCCM M C

P2 2 1 0.83 2.33 2.00

P3 2 2 1.17 2.00 1.83

Program P2 and P3 in Table II shows that, the value of

NCCM is in increasing order and the value of M& C are

in decreasing order. With the increase in DIT from 1 to 2

the complexity increases. The value of M=2.33 with

DIT=1 is more than M=2.0 with DIT=2. Similarly the

value C=2.0 with DIT=1 is more than C=1.83 with

DIT=2. But with NCCM, the value increases with the

increase of DIT. The graph in Fig. 4 shows negative slope

with M & C and which is inverse to DIT and NCCM

having positive slope.

Figure 4. Metrics value of program P2 to P3.

B. Comparison of Metrics with Four Classes (Three

Nested)

TABLE III. COMPARISON OF NCCM VALUE OF PROGRAM P4 TO P7

Program

Number of

Nested

Classes

DIT NCCM M C

P4 3 1 0.75 3.25 2.50

P5 3 2 1.00 2.83 2.33

P6 3 2 1.08 2.83 2.17

P7 3 3 1.33 2.50 2.08

Figure 5. Metrics value of program P4 to P7.

Program P4, P5, P6 and P7 in Table III shows that, the

value of NCCM is in increasing order and the value of M

& C are in decreasing order. With the increase in DIT

from 1 to 3 the complexity increases. The value of

M=3.25 with DIT=1 is much more than M=2.50 with

DIT=3. Similarly the value of C=2.50 with DIT=1 is

more that C=2.08 with DIT=3. But with NCCM, the

value increases from 0.75 to 1.33 with the increase of

DIT from 1 to 3. The graph in Fig. 5 shows negative

slope with M & C and which is inverse to DIT and

NCCM having positive slope.

C. Comparison of Metrics with Five Classes (Four

Nested)

Program P8, P9, P10, P11, P12, P13, P14 and P15 in

Table 4 shows that, the value of NCCM is in increasing

order and the value of M is in decreasing order. With the

increase in DIT from 1 to 4 the complexity increases. The

value of M=4.20 with DIT=1 is much more than M=3.0

with DIT=4. But with NCCM, the value increases from

0

1

2

3

P2 P3

M
e

tr
ic

s
V

al
u

e

Programs

DIT NCCM M C

0

2

4

P4 P5 P6 P7

M
e

tr
ic

s
V

al
u

e

Programs

DIT NCCM M C

246

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

0.70 to 1.53 with the increase of DIT from 1 to 4. The

graph in Fig. 6 shows negative slope with M & C and

which is inverse to DIT and NCCM having positive slope.

TABLE IV. COMPARISON OF NCCM VALUE OF PROGRAM P8 TO P15

Program

Number of

Nested

Classes

DIT NCCM M C

P8 4 1 0.70 4.20 3.00

P9 4 2 0.92 3.33 2.67

P10 4 2 0.92 3.75 2.83

P11 4 2 1.03 3.75 2.50

P12 4 3 1.17 3.33 2.58

P13 4 3 1.25 3.33 2.42

P14 4 3 1.28 3.33 2.33

P15 4 4 1.48 3.00 2.28

Figure 6. Metrics value of program P8 to P15.

V. CONCLUSIONS

Object oriented metrics help the developer in the

object oriented software development. The various

complexity metrics proposed by different researchers

from time to time mainly depict the use of classes,

inheritance, coupling, cohesion, and polymorphism

factors in their research. Here, we have used nested

classes or inner classes, which enhance encapsulation,

motivate the developer to use them frequently. The

proposed complexity metric was compared with existing

metrics using different set of programs. It is quite

interesting that in each case, the proposed complexity

metric provides better results than the existing ones. The

proposed metric in graphical representation shows

positive slope with DIT whereas the other existing

metrics show negative slope. This metric may be

improved or some new metrics may be designed for

nested classes in future by using some other aspects of

object oriented software development.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, “Towards a metric suite for
object-oriented design,” in Proc. the Conference on Object-

Oriented Programming Systems, Languages and Applications,

ACM Press: NY, 1991, pp. 197-211.

[2] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object

oriented design,” IEEE Transactions on Software Engineering, vol.
20, no. 6, pp. 476-493, 1994.

[3] S. R. Chidamber and C. F. Kemerer, “Managerial use of metrics

for object-oriented software: An exploratory analysis,” IEEE
Transactions on Software Engineering, vol. 24, no. 8, pp. 629-639,

1998.

[4] L. C. Braind and S. Morasoa, “Defining and validating measures
for object-based high level design,” IEEE Transactions on

Software Engineering, vol. 25, no. 5, pp. 722-743, 1999.

[5] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of
MOOD set of object oriented software metrics,” IEEE Trans.

Software Engineering, vol. SE-24, no. 6, pp. 491-496,1998.
[6] R. S. Chhillar and P. Kajla, “Metrics to study constructor in class

hierarchy,” in Proc. National Conference on Advanced Computing

Technologies-2013, March 2013, vol. 2, pp. 923-926.
[7] W. Li and S. Henry, “Object-oriented metrics that predict

maintainability,” Journal of Systems and Software, vol. 23, no. 2,

pp. 111-122, 1993.
[8] M. H. Tang, M. H. Kao, and M. H. Chen, “An empirical study on

object-oriented metrics,” in Proc. 23rd Annual International

Computer Software and Application Conference, IEEE Computer
Society, 1999, pp. 242-249.

[9] R. S. Pressman, Software Engineering: A Practitioner’s Approach,

6th ed., Singapore: McGraw-Hill, 2005, ch. 15, pp. 480-486.
[10] F. B. Abreu, “The MOOD metrics set,” presented at the 9th

European Conference on Object-Oriented Programming,

Workshop on Metrics, Aarhus, Denmark, 1995.
[11] K. Morris, “Metrics for object oriented software development,”

Master’s thesis, M.I.T., Sloan School of Management, Cambridge,

MA, 1998.
[12] K. K. Aggarwal, Y. Singh, and R. Malhotra, “Empirical study of

object-oriented metrics,” Journal of Object Technology, vol. 5, no.

8, pp. 149-173, 2006.
[13] U. Chhillar and S. Bhasin, “Establishing relationship between

complexity and faults for object-oriented software systems,”

International Journal of Computer Science Issues, vol. 8, no. 5, pp.
437-442, 2011.

[14] R. Singh and P. S. Grover, “A new program weighted complexity

metric,” in Proc. International Conference on Software Engg.,
1997, pp. 33-39.

[15] S. Mishra, “An object oriented complexity metric based on

cognitive weights,” presented at 6th IEEE International
Conference on Cognitive Informatics, California, USA, August 6

– 8, 2007.

[16] R. S. Chhillar, P. Ahlawat, and U. Chhillar, “Measuring
complexity of component based system,” in Proc. 2nd

International Conference on Information Communication and

Management, vol. 55, 2012, pp. 19-27.
[17] N. S. Gill, Software Engineering: Software Reliability, Testing

and Quality Assurance, New Delhi: Khanna Book Publishing Co.,

2007, ch. 12, pp. 341-346.
[18] S. H. Tee, “Developing a maintainability metric for inner classes,”

Asian Journal of Information Technology, vol. 9, no. 2, pp. 98-100,

2010,
[19] S. H. Tee, R. Atan, and A. Ghani, “Developing a complexity

metric for inner classes,” Journal of Theoretical and Applied

Information Technology, vol. 12, no. 2, pp. 77-83, 2010.

Dr. Rajender Singh Chhillar is working as Professor

and Head, Department of Computer Science and

Applications, Maharshi Dayanand University (MDU),

Rohtak, Haryana, India. He acted as Director,
University Institute of Engineering and Technology

(UIET), M. D. University, Rohtak from April, 2006 to

August 2007 and remained Head, Department of Computer Science and
Applications, M. D. University, Rohtak earlier also from March 2003 to

March 2006. He also worked as Director Computer Centre, MDU from

2003 to 2010. He was member, monitoring committee of campus wide
Networking, M. D. University, Rohtak. He obtained his Ph.D. in

Computer Science from Maharshi Dayanand University, Rohtak and

Master’s Degree from Kurukshetra University, Kurukshetra. His
researches include Software Engineering, Software Testing, Computer

Network Security, Software Metrics, Component and Aspect based

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P8 P9 P10 P11 P12 P13 P14 P15

M
e

tr
ic

s
V

al
u

e

Programs

DIT NCMM M C

247

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

Metrics, Data Warehousing and Data Mining, Information and Network

security and IT Management. He has published more than 150
publications in International and National journals/ conferences.

Professor Chhillar has also authored two books – Software Engineering:

Metrics, Testing and Faults, Excel Books House, New Delhi; and
Application of Information Technology to Business, Ramesh Books

House, Jaipur. He is senior member of various National and

International academic bodies/associations and reviewer of various
International journals.

Mr. Parveen Kajla is a Research Scholar in the
Department of Computer Science and Applications,

Maharshi Dayanand University (MDU), Rohtak,
Haryana, India. He is coordinator of PG Courses at

Vaish Mahila Mahavidyalya, Rohtak and Senior

Lecturer in Department of Computer Science and
Applications, Vaish Mahila Mahavidyalya, Rohtak. He obtained his

Master’s Degree in Computer Science from Maharshi Dayanand

University, Rohtak and M. Phil. (Computer Science) from Chaudhary

Devi Lal University (CDLU), Sirsa. His research interest includes
Software Engineering focusing on Object oriented and component based

metrics.

Dr. Usha Chhillar is working as Head, Department of

Computer Science, A.I.J.H.M. PG College, Rohtak,
Haryana, India. She obtained her Ph.D. Degree in

Computer Science from Department of Computer

Science and Applications, Kurukshetra University,
Kurukshetra, Haryana, India. She pursued her Master

Degree in Computer Science from Maharshi Dayanand University

(MDU), Rohtak and M. Phil. (Computer Science) from Ch.Devi Lal
University (CDLU), Sirsa. She has total more than thirteen years

teaching experience. Her research interests include Software

Engineering, Object-Oriented and Component-based Software Metrics.

248

International Journal of Electrical Energy, Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

